This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A384653 #11 Jun 06 2025 08:35:48 %S A384653 1,1,0,1,1,0,1,2,2,0,1,3,5,9,0,1,4,9,22,56,0,1,5,14,40,134,432,0,1,6, %T A384653 20,64,240,1012,3935,0,1,7,27,95,381,1779,9039,40820,0,1,8,35,134,565, %U A384653 2780,15596,92246,471633,0,1,9,44,182,801,4071,23950,156597,1051558,5980210,0 %N A384653 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of B(x)^k, where B(x) is the g.f. of A384649. %F A384653 A(n,0) = 0^n; A(n,k) = k * Sum_{j=0..n} binomial(4*n-3*j+k,j)/(4*n-3*j+k) * A(n-j,j). %e A384653 Square array begins: %e A384653 1, 1, 1, 1, 1, 1, 1, ... %e A384653 0, 1, 2, 3, 4, 5, 6, ... %e A384653 0, 2, 5, 9, 14, 20, 27, ... %e A384653 0, 9, 22, 40, 64, 95, 134, ... %e A384653 0, 56, 134, 240, 381, 565, 801, ... %e A384653 0, 432, 1012, 1779, 2780, 4071, 5718, ... %e A384653 0, 3935, 9039, 15596, 23950, 34515, 47786, ... %o A384653 (PARI) a(n, k) = if(k==0, 0^n, k*sum(j=0, n, binomial(4*n-3*j+k, j)/(4*n-3*j+k)*a(n-j, j))); %Y A384653 Columns k=0..1 give A000007, A384649. %Y A384653 Cf. A379598, A384651, A384652, A384654. %K A384653 nonn,tabl %O A384653 0,8 %A A384653 _Seiichi Manyama_, Jun 06 2025