cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A384658 Primitive terms in A384657: numbers k such that A384655(k) > k and A384655(d) <= d for every proper divisor d of k.

Original entry on oeis.org

24, 80, 108, 112, 180, 200, 252, 280, 300, 352, 396, 416, 420, 440, 468, 520, 612, 660, 684, 780, 828, 1044, 1088, 1116, 1216, 1332, 1472, 1476, 1548, 1692, 1856, 1908, 1984, 2124, 2196, 2288, 2412, 2556, 2628, 2844, 2988, 2992, 3204, 3344, 3492, 3536, 3636, 3708, 3852, 3924, 3952
Offset: 1

Views

Author

Amiram Eldar, Jun 06 2025

Keywords

Comments

If k is a term then every positive multiple of k is a term in A384657.

Examples

			24 is a term since A384655(24) = 25 > 24, the proper divisors of 24 are {1, 2, 3, 4, 6, 8, 12}, A384655(1) = 0 < 1, A384655(2) = 1 < 2, A384655(3) = 1 < 3, A384655(4) = 3 < 4, A384655(6) = 4 < 6, A384655(8) = 7 < 8, and A384655(12) = 11 < 12.
		

Crossrefs

Subsequence of A013929 and A384657.
Cf. A384655.

Programs

  • Mathematica
    f[p_, e_, k_] := p^e - If[e < k, 0, p^(e - k)]; q[n_] := Module[{fct = FactorInteger[n], emax, s}, emax = Max[fct[[;; , 2]]]; If[emax < 2, False, s = emax * n; Do[s -= Times @@ (f[#1, #2, k] & @@@ fct), {k, 1, emax}]; s > n]]; primQ[n_] := q[n] && AllTrue[Divisors[n], # == n || !q[#] &]; Select[Range[4000], primQ]
  • PARI
    is1(m) = {my(f = factor(m), p, e, emax, s); if(issquarefree(f), 0, p = f[,1]; e = f[,2]; emax = vecmax(e); s = emax*m; for(k = 1, emax, s -= prod(i = 1, #p, p[i]^e[i] - if(e[i] < k, 0, p[i]^(e[i]-k)))); s > m);}
    isok(k) = if(!is1(k), 0, fordiv(k, d, if(d < k && is1(d), return(0))); 1);
Showing 1-1 of 1 results.