This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A384666 #8 Jun 12 2025 17:05:59 %S A384666 1,6,17,35,56,90,125,178,223,282,344,436,499,608,701,804,904,1062, %T A384666 1164,1339,1450,1604,1765,1988,2114,2335,2525,2735,2909,3194,3366, %U A384666 3679,3887,4137,4389,4661,4840,5237,5536,5835,6068,6507,6759,7195,7473,7773,8148,8645 %N A384666 Number of distinct values of the quadratic discriminant D=b^2-4*a*c, for a,b,c in the range [-n,n]. %C A384666 a(n) is lower bounded by n log n for n > 0. %C A384666 The number of distinct a*c is 2*A027384(n)-1. %o A384666 (Python) %o A384666 def a(n): %o A384666 D, ac = {0}, {0} %o A384666 SQ = [i*i for i in range(0, n+1)] %o A384666 for i in range(1, n+1): %o A384666 ac.add(i) %o A384666 if (s:= SQ[i]) > n: %o A384666 ac.add(s) %o A384666 for a_ in range(2, n): %o A384666 for c in range(a_+ 1, n+1): %o A384666 ac.add(a_* c) %o A384666 for b in range(n + 1): %o A384666 b2 = SQ[b] %o A384666 for v in ac: %o A384666 ac4 = v << 2 %o A384666 D.add(b2 + ac4) %o A384666 if b2 < ac4: %o A384666 D.add(b2 - ac4) %o A384666 return len(D) %o A384666 print([a(n) for n in range(0, 48)]) %Y A384666 Cf. A000217, A027384. %K A384666 nonn %O A384666 0,2 %A A384666 _DarĂo Clavijo_, Jun 06 2025