cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A384674 Lexicographically smallest sequence of distinct primes whose inverse binomial transform consists only of primes.

This page as a plain text file.
%I A384674 #26 Aug 28 2025 10:20:51
%S A384674 2,5,11,23,47,97,211,491,1187,2857,6659,14879,31891,65929,132469,
%T A384674 261059,510031,999721,1988797,4048339,8450557,18014701,38902439,
%U A384674 84347189,182269327,390630769,828123239,1735146097,3594509969,7369765889,14975024861,30200498591,60537295711
%N A384674 Lexicographically smallest sequence of distinct primes whose inverse binomial transform consists only of primes.
%H A384674 Alois P. Heinz, <a href="/A384674/b384674.txt">Table of n, a(n) for n = 0..1000</a>
%p A384674 a:= proc(n) option remember; local b, p;
%p A384674       b:= add(a(n-i)*binomial(n, i)*(-1)^i, i=1..n);
%p A384674       p:= nextprime(abs(b));
%p A384674       do if isprime(p+b) then break fi ;
%p A384674          p:= nextprime(p)
%p A384674       od; p
%p A384674     end: a(0):=2:
%p A384674 seq(a(n), n=0..32);  # _Alois P. Heinz_, Jun 06 2025
%t A384674 a[n_] := a[n] = Module[{b, p}, b = Sum[a[n-i]*Binomial[n, i]*(-1)^i, {i, 1, n}]; p = NextPrime[Abs[b]]; While[True, If[PrimeQ[p+b], Break[]]; p = NextPrime[p]]; p];
%t A384674 a[0] = 2;
%t A384674 Table[a[n], {n, 0, 32}] (* _Jean-François Alcover_, Aug 28 2025, after _Alois P. Heinz_ *)
%Y A384674 Cf. A000040, A007442, A111107.
%K A384674 nonn,changed
%O A384674 0,1
%A A384674 _Alexander R. Povolotsky_, Jun 06 2025
%E A384674 More terms from _Alois P. Heinz_, Jun 06 2025