This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A384684 #24 Jul 07 2025 14:26:06 %S A384684 1,28,30,45,65,66,90,105,133,190,231,286,301,325,369,385,426,496,532, %T A384684 561,645,793,946,1016,1105,1288,1353,1729,1905,2041,2107,2121,2275, %U A384684 2278,2413,2465,2501,2701,2737,2821,3577,3781,3861,4015,4123,4161,4699 %N A384684 Nonprimes k such that sopf(k)^k == sopf(k) (mod k) where sopf = A008472. %C A384684 Superset of even perfect numbers > 6. %H A384684 Robert Israel, <a href="/A384684/b384684.txt">Table of n, a(n) for n = 1..10000</a> %p A384684 filter:= proc(k) local s; %p A384684 if isprime(k) then return false fi; %p A384684 s:= convert(numtheory:-factorset(k),`+`); %p A384684 (s &^ k - s) mod k = 0; %p A384684 end proc: %p A384684 select(filter, [$1..10000]); # _Robert Israel_, Jun 12 2025 %t A384684 A008472[n_]:=Sum[p, {p, Select[Divisors[n], PrimeQ]}]; Select[Range[5000],PowerMod[A008472[#],#,#]==A008472[#] &] (* _Stefano Spezia_, Jun 07 2025 *) %o A384684 (Magma) [k: k in [1..5000] | not IsPrime(k) and Modexp(k eq 1 select 0 else &+[p[1]: p in Factorization(k)], k, k) eq (k eq 1 select 0 else &+[p[1]: p in Factorization(k)])]; %o A384684 (PARI) isok(k) = if (!isprime(k), my(s=vecsum(factor(k)[, 1])); Mod(s, k)^k == s); \\ _Michel Marcus_, Jun 12 2025 %Y A384684 Cf. A000396, A005835, A008472, A107290, A239546, A302333. %K A384684 nonn %O A384684 1,2 %A A384684 _Juri-Stepan Gerasimov_, Jun 06 2025