This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A384714 #34 Jun 25 2025 17:27:21 %S A384714 11,12,14,18,21,22,24,28,31,34,38,41,42,44,48,51,52,54,58,61,62,68,71, %T A384714 72,74,78,81,82,84,88,91,92,94,98,101,102,104,108,111,112,114,116,118, %U A384714 121,122,124,131,132,134,138,141,142,144,148,151,152,154,158,161,162 %N A384714 Nonpowers of 2 whose trailing digits form a power of 2. %C A384714 Nonpowers of 2 that are of the form h*10^j + 2^k with j > k*log10(2) and h > 0. %H A384714 Stefano Spezia, <a href="/A384714/b384714.txt">Table of n, a(n) for n = 1..10000</a> %t A384714 Select[Range[162], !IntegerQ[Log2[#]] && Sum[Boole[IntegerQ[Log2[FromDigits[Drop[IntegerDigits[#],i]]]]],{i,IntegerLength[#]}] > 0 &] %t A384714 (* Second program: *) %t A384714 nn = 162; s = 2^Range[0, Floor@ Log2[nn]]; Complement[Union@ Reap[Map[(w = IntegerDigits[#]; i = 1; While[Set[k, FromDigits@Join[IntegerDigits[i], w]] <= nn, Sow[k]; i++]) &, s] ][[-1, 1]], s] (* _Michael De Vlieger_, Jun 25 2025 *) %o A384714 (PARI) isp2(k) = k==1<<valuation(k, 2); \\ A209229 %o A384714 isok(k) = if (!isp2(k), for (i=1, oo, my(z=k % 10^i); if (z==k, return(0), if (z && isp2(z), return(1))))); return(0); \\ _Michel Marcus_, Jun 24 2025 %Y A384714 Cf. A007524, A057716, A209229. %Y A384714 Complement of A000079 in A385289. %Y A384714 A002275 \ {0, 1} and A017281 \ {1} are subsequences. %K A384714 nonn,base,easy %O A384714 1,1 %A A384714 _Stefano Spezia_, Jun 23 2025