cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A384716 The totient of the product of unitary divisors of n.

This page as a plain text file.
%I A384716 #28 Aug 11 2025 10:24:19
%S A384716 1,1,2,2,4,12,6,4,6,40,10,48,12,84,120,8,16,108,18,160,252,220,22,192,
%T A384716 20,312,18,336,28,216000,30,16,660,544,840,432,36,684,936,640,40,
%U A384716 889056,42,880,1080,1012,46,768,42,1000,1632,1248,52,972,2200,1344,2052
%N A384716 The totient of the product of unitary divisors of n.
%C A384716 a(n) is the totient of the product over all unitary divisors d of n; i.e., those divisors satisfying gcd(d, n/d) = 1.
%C A384716 Growth rate of a(n) is ~ n^O(log log n).
%C A384716 Also, a(n) is lower bounded by A000010(n).
%F A384716 a(n) = phi(Product_{d|n} d if gcd(d, n/d) = 1).
%F A384716 a(n) = n^(2^(omega(n)-1)-1) * phi(n).
%F A384716 a(n) = A000010(A061537(n)).
%F A384716 a(p) = p-1 for p prime.
%t A384716 f[p_, e_, m_] := (p-1)*p^(e*m-1); a[n_] := Module[{fct = FactorInteger[n]}, Times @@ (f[#1, #2, 2^(Length[fct]-1)] & @@@ fct)]; a[1] = 1; Array[a, 100] (* _Amiram Eldar_, Jun 11 2025 *)
%o A384716 (Python)
%o A384716 from sympy import factorint
%o A384716 def a(n):
%o A384716     if n == 1: return 1
%o A384716     factors = factorint(n)
%o A384716     phi, w = 1, len(factors)
%o A384716     for p, e in factors.items():
%o A384716         phi *= (p - 1) * p**(e - 1)
%o A384716     return n**((1 << (w-1)) - 1) * phi
%o A384716 print([a(n) for n in range(1, 58)])
%Y A384716 Cf. A000010, A000225, A006093, A061537, A384763.
%K A384716 nonn
%O A384716 1,3
%A A384716 _DarĂ­o Clavijo_, Jun 11 2025