This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A384716 #28 Aug 11 2025 10:24:19 %S A384716 1,1,2,2,4,12,6,4,6,40,10,48,12,84,120,8,16,108,18,160,252,220,22,192, %T A384716 20,312,18,336,28,216000,30,16,660,544,840,432,36,684,936,640,40, %U A384716 889056,42,880,1080,1012,46,768,42,1000,1632,1248,52,972,2200,1344,2052 %N A384716 The totient of the product of unitary divisors of n. %C A384716 a(n) is the totient of the product over all unitary divisors d of n; i.e., those divisors satisfying gcd(d, n/d) = 1. %C A384716 Growth rate of a(n) is ~ n^O(log log n). %C A384716 Also, a(n) is lower bounded by A000010(n). %F A384716 a(n) = phi(Product_{d|n} d if gcd(d, n/d) = 1). %F A384716 a(n) = n^(2^(omega(n)-1)-1) * phi(n). %F A384716 a(n) = A000010(A061537(n)). %F A384716 a(p) = p-1 for p prime. %t A384716 f[p_, e_, m_] := (p-1)*p^(e*m-1); a[n_] := Module[{fct = FactorInteger[n]}, Times @@ (f[#1, #2, 2^(Length[fct]-1)] & @@@ fct)]; a[1] = 1; Array[a, 100] (* _Amiram Eldar_, Jun 11 2025 *) %o A384716 (Python) %o A384716 from sympy import factorint %o A384716 def a(n): %o A384716 if n == 1: return 1 %o A384716 factors = factorint(n) %o A384716 phi, w = 1, len(factors) %o A384716 for p, e in factors.items(): %o A384716 phi *= (p - 1) * p**(e - 1) %o A384716 return n**((1 << (w-1)) - 1) * phi %o A384716 print([a(n) for n in range(1, 58)]) %Y A384716 Cf. A000010, A000225, A006093, A061537, A384763. %K A384716 nonn %O A384716 1,3 %A A384716 _DarĂo Clavijo_, Jun 11 2025