A384717 Sum of floored squared chord lengths from -1 to the 2n-th roots of unity (upper semicircle, endpoints excluded).
0, 2, 4, 5, 6, 9, 9, 11, 13, 14, 15, 18, 18, 20, 22, 23, 24, 27, 27, 29, 31, 32, 33, 36, 36, 38, 40, 41, 42, 45, 45, 47, 49, 50, 51, 54, 54, 56, 58, 59, 60, 63, 63, 65, 67, 68, 69, 72, 72, 74, 76, 77, 78, 81, 81, 83, 85, 86, 87, 90
Offset: 1
Examples
n = 10: the list floor(2 + 2*cos(Pi*k/10)) for k = 1..9 is 3, 3, 2, 2, 2, 1, 1, 0, 0; sum = 14. Check with the closed form: floor(10/2) + floor(10/3) + floor(20/3) = 5 + 3 + 6 = 14.
Links
- Paolo Xausa, Table of n, a(n) for n = 1..10000
- Index entries for linear recurrences with constant coefficients, signature (0,1,1,0,-1).
Programs
-
MATLAB
function an = euler_chord_term(n) an = floor(n/2) + floor(n/3) + floor(2*n/3); end
-
Mathematica
A384717[n_] := Quotient[n, 2] + Quotient[n, 3] + Quotient[2*n, 3]; Array[A384717, 100] (* Paolo Xausa, Aug 28 2025 *)
-
PARI
a(n) = n\2 + n\3 + 2*n\3; \\ Amiram Eldar, Aug 29 2025
Formula
a(n) = floor(n/2) + floor(n/3) + floor(2*n/3).
Comments