This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A384721 #13 Jun 08 2025 10:50:00 %S A384721 1,1,0,1,1,0,1,2,5,0,1,3,12,61,0,1,4,21,152,1281,0,1,5,32,279,3200, %T A384721 39641,0,1,6,45,448,5937,98192,1655713,0,1,7,60,665,9696,181563, %U A384721 4053688,88312869,0,1,8,77,936,14705,296864,7430265,213600200,5792082817,0 %N A384721 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of e.g.f. B(x)^k, where B(x) is the e.g.f. of A384719. %F A384721 A(n,0) = 0^n; A(n,k) = k * Sum_{j=0..n} (n-j+k)^(j-1) * binomial(n,j) * A(n-j,2*j). %e A384721 Square array begins: %e A384721 1, 1, 1, 1, 1, 1, ... %e A384721 0, 1, 2, 3, 4, 5, ... %e A384721 0, 5, 12, 21, 32, 45, ... %e A384721 0, 61, 152, 279, 448, 665, ... %e A384721 0, 1281, 3200, 5937, 9696, 14705, ... %e A384721 0, 39641, 98192, 181563, 296864, 452525, ... %o A384721 (PARI) a(n, k) = if(k==0, 0^n, k*sum(j=0, n, (n-j+k)^(j-1)*binomial(n, j)*a(n-j, 2*j))); %Y A384721 Columns k=0..1 give A000007, A384719. %Y A384721 Cf. A380178, A384722. %Y A384721 Cf. A384718, A384692. %K A384721 nonn,tabl %O A384721 0,8 %A A384721 _Seiichi Manyama_, Jun 08 2025