This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A384722 #12 Jun 08 2025 10:49:56 %S A384722 1,1,0,1,1,0,1,2,7,0,1,3,16,118,0,1,4,27,278,3385,0,1,5,40,486,8008, %T A384722 141556,0,1,6,55,748,14121,333482,7918489,0,1,7,72,1070,22000,587268, %U A384722 18524980,561302470,0,1,8,91,1458,31945,916084,32452353,1303041350,48589734337,0 %N A384722 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of e.g.f. B(x)^k, where B(x) is the e.g.f. of A384720. %F A384722 A(n,0) = 0^n; A(n,k) = k * Sum_{j=0..n} (n-j+k)^(j-1) * binomial(n,j) * A(n-j,3*j). %e A384722 Square array begins: %e A384722 1, 1, 1, 1, 1, 1, ... %e A384722 0, 1, 2, 3, 4, 5, ... %e A384722 0, 7, 16, 27, 40, 55, ... %e A384722 0, 118, 278, 486, 748, 1070, ... %e A384722 0, 3385, 8008, 14121, 22000, 31945, ... %e A384722 0, 141556, 333482, 587268, 916084, 1334900, ... %o A384722 (PARI) a(n, k) = if(k==0, 0^n, k*sum(j=0, n, (n-j+k)^(j-1)*binomial(n, j)*a(n-j, 3*j))); %Y A384722 Columns k=0..1 give A000007, A384720. %Y A384722 Cf. A380178, A384721. %K A384722 nonn,tabl %O A384722 0,8 %A A384722 _Seiichi Manyama_, Jun 08 2025