This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A384723 #8 Jun 10 2025 16:25:58 %S A384723 1,2,4,6,12,18,24,30,60,90,120,150,180,210,240,420,540,630,840,1050, %T A384723 1260,1470,1680,1890,2100,2310,2520,3360,4620,6300,6930,7560,9240 %N A384723 Heinz numbers of conjugates of maximally refined strict integer partitions. %C A384723 The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions. %C A384723 Given a partition, the following are equivalent: %C A384723 1) The distinct parts are maximally refined. %C A384723 2) Every strict partition of a part contains a part. In other words, if y is the set of parts and z is any strict partition of any element of y, then z must contain at least one element from y. %C A384723 3) No part is a sum of distinct non-parts. %e A384723 The terms together with their prime indices begin: %e A384723 1: {} %e A384723 2: {1} %e A384723 4: {1,1} %e A384723 6: {1,2} %e A384723 12: {1,1,2} %e A384723 18: {1,2,2} %e A384723 24: {1,1,1,2} %e A384723 30: {1,2,3} %e A384723 60: {1,1,2,3} %e A384723 90: {1,2,2,3} %e A384723 120: {1,1,1,2,3} %e A384723 150: {1,2,3,3} %e A384723 180: {1,1,2,2,3} %e A384723 210: {1,2,3,4} %e A384723 240: {1,1,1,1,2,3} %e A384723 420: {1,1,2,3,4} %e A384723 540: {1,1,2,2,2,3} %e A384723 630: {1,2,2,3,4} %e A384723 840: {1,1,1,2,3,4} %t A384723 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A384723 conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]]; %t A384723 nonsets[y_]:=If[Length[y]==0,{},Rest[Subsets[Complement[Range[Max@@y],y]]]]; %t A384723 Select[Range[100],With[{y=conj[prix[#]]},UnsameQ@@y&&Intersection[y,Total/@nonsets[y]]=={}]&] %Y A384723 Partitions of this type are counted by A179009. %Y A384723 The conjugate version is A383707, proper A384390. %Y A384723 Appears to be the positions of 1 in A384005 (conjugate A383706). %Y A384723 For at least one instead of exactly one choice we appear to have A384010. %Y A384723 A055396 gives least prime index, greatest A061395. %Y A384723 A056239 adds up prime indices, row sums of A112798. %Y A384723 A122111 represents conjugation in terms of Heinz numbers. %Y A384723 A239455 counts Look-and-Say or section-sum partitions, ranks A351294 or A381432. %Y A384723 A351293 counts non-Look-and-Say or non-section-sum partitions, ranks A351295 or A381433. %Y A384723 A357982 counts strict partitions of prime indices, non-strict A299200. %Y A384723 Cf. A003963, A048767, A130091, A382525, A384317, A384318, A384320, A384347, A384349, A384394. %K A384723 nonn,more %O A384723 1,2 %A A384723 _Gus Wiseman_, Jun 09 2025