cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A384723 Heinz numbers of conjugates of maximally refined strict integer partitions.

This page as a plain text file.
%I A384723 #8 Jun 10 2025 16:25:58
%S A384723 1,2,4,6,12,18,24,30,60,90,120,150,180,210,240,420,540,630,840,1050,
%T A384723 1260,1470,1680,1890,2100,2310,2520,3360,4620,6300,6930,7560,9240
%N A384723 Heinz numbers of conjugates of maximally refined strict integer partitions.
%C A384723 The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
%C A384723 Given a partition, the following are equivalent:
%C A384723 1) The distinct parts are maximally refined.
%C A384723 2) Every strict partition of a part contains a part. In other words, if y is the set of parts and z is any strict partition of any element of y, then z must contain at least one element from y.
%C A384723 3) No part is a sum of distinct non-parts.
%e A384723 The terms together with their prime indices begin:
%e A384723      1: {}
%e A384723      2: {1}
%e A384723      4: {1,1}
%e A384723      6: {1,2}
%e A384723     12: {1,1,2}
%e A384723     18: {1,2,2}
%e A384723     24: {1,1,1,2}
%e A384723     30: {1,2,3}
%e A384723     60: {1,1,2,3}
%e A384723     90: {1,2,2,3}
%e A384723    120: {1,1,1,2,3}
%e A384723    150: {1,2,3,3}
%e A384723    180: {1,1,2,2,3}
%e A384723    210: {1,2,3,4}
%e A384723    240: {1,1,1,1,2,3}
%e A384723    420: {1,1,2,3,4}
%e A384723    540: {1,1,2,2,2,3}
%e A384723    630: {1,2,2,3,4}
%e A384723    840: {1,1,1,2,3,4}
%t A384723 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A384723 conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
%t A384723 nonsets[y_]:=If[Length[y]==0,{},Rest[Subsets[Complement[Range[Max@@y],y]]]];
%t A384723 Select[Range[100],With[{y=conj[prix[#]]},UnsameQ@@y&&Intersection[y,Total/@nonsets[y]]=={}]&]
%Y A384723 Partitions of this type are counted by A179009.
%Y A384723 The conjugate version is A383707, proper A384390.
%Y A384723 Appears to be the positions of 1 in A384005 (conjugate A383706).
%Y A384723 For at least one instead of exactly one choice we appear to have A384010.
%Y A384723 A055396 gives least prime index, greatest A061395.
%Y A384723 A056239 adds up prime indices, row sums of A112798.
%Y A384723 A122111 represents conjugation in terms of Heinz numbers.
%Y A384723 A239455 counts Look-and-Say or section-sum partitions, ranks A351294 or A381432.
%Y A384723 A351293 counts non-Look-and-Say or non-section-sum partitions, ranks A351295 or A381433.
%Y A384723 A357982 counts strict partitions of prime indices, non-strict A299200.
%Y A384723 Cf. A003963, A048767, A130091, A382525, A384317, A384318, A384320, A384347, A384349, A384394.
%K A384723 nonn,more
%O A384723 1,2
%A A384723 _Gus Wiseman_, Jun 09 2025