This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A384726 #13 Jun 16 2025 16:20:59 %S A384726 2,35,273,11235,237615,11237835,1123317195,111371237835, %T A384726 11132343837615,1113172923477615,111317233377372295, %U A384726 11131723677292413195,1113172377671953734135,111317192375336174123715 %N A384726 a(n) is the least number that is both the product of n distinct primes and the concatenation of n distinct primes. %C A384726 a(n) is odd for n >= 2, because a number whose last digit is 2 and second-last is odd is divisible by 4. %e A384726 a(4) = 11235 is a term because 11235 is the product of four distinct primes 3, 5, 7, 107 and the concatenation of four distinct primes 11, 2, 3, 5, and no smaller number works. %p A384726 cdp:= proc(x, n, S) %p A384726 local i,y; %p A384726 if n = 1 then return (not(member(x,S)) and isprime(x)) fi; %p A384726 for i from 1 to ilog10(x)+2-n do %p A384726 y:= x mod 10^i; %p A384726 if member(y,S) or not isprime(y) then next fi; %p A384726 if procname((x-y)/10^i, n-1, S union {y}) then return true fi; %p A384726 od; %p A384726 false %p A384726 end proc: %p A384726 f:= proc(n) uses priqueue; local pq, t, p, x, i, L, v, Lp; %p A384726 initialize(pq); %p A384726 L:= [seq(ithprime(i), i=2..n+1)]; %p A384726 v:= convert(L, `*`); %p A384726 insert([-v, L], pq); %p A384726 do %p A384726 t:= extract(pq); %p A384726 x:= -t[1]; %p A384726 if cdp(x,n,{}) then return x fi; %p A384726 L:= t[2]; %p A384726 p:= nextprime(L[-1]); %p A384726 for i from n to 1 by -1 do %p A384726 if i < n and L[i] <> prevprime(L[i+1]) then break fi; %p A384726 Lp:= [op(L[1..i-1]), op(L[i+1..n]), p]; %p A384726 insert([-convert(Lp, `*`), Lp], pq) %p A384726 od od; %p A384726 end proc: %p A384726 f(1):= 2: %p A384726 map(f, [$1..9]); %Y A384726 Cf. A083427, A374665. %K A384726 nonn,base,more %O A384726 1,1 %A A384726 _Robert Israel_, Jun 08 2025 %E A384726 a(11)-a(14) from _Jinyuan Wang_, Jun 12 2025