This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A384742 #11 Jun 09 2025 10:34:02 %S A384742 1,1,0,1,1,0,1,2,3,0,1,3,8,34,0,1,4,15,86,665,0,1,5,24,162,1656,20556, %T A384742 0,1,6,35,268,3081,49802,901417,0,1,7,48,410,5072,90588,2132476, %U A384742 52455250,0,1,8,63,594,7785,146484,3792177,121703094,3885229665,0 %N A384742 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of e.g.f. B(x)^k, where B(x) is the e.g.f. of A384740. %F A384742 A(n,0) = 0^n; A(n,k) = k * Sum_{j=0..n} (3*n-3*j+k)^(j-1) * binomial(n,j) * A(n-j,j). %e A384742 Square array begins: %e A384742 1, 1, 1, 1, 1, 1, ... %e A384742 0, 1, 2, 3, 4, 5, ... %e A384742 0, 3, 8, 15, 24, 35, ... %e A384742 0, 34, 86, 162, 268, 410, ... %e A384742 0, 665, 1656, 3081, 5072, 7785, ... %e A384742 0, 20556, 49802, 90588, 146484, 221900, ... %o A384742 (PARI) a(n, k) = if(k==0, 0^n, k*sum(j=0, n, (3*n-3*j+k)^(j-1)*binomial(n, j)*a(n-j, j))); %Y A384742 Columns k=0..1 give A000007, A384740. %Y A384742 Cf. A380178, A384741. %K A384742 nonn,tabl %O A384742 0,8 %A A384742 _Seiichi Manyama_, Jun 08 2025