This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A384751 #10 Jun 09 2025 10:33:51 %S A384751 1,1,0,1,1,0,1,2,5,0,1,3,12,73,0,1,4,21,176,1881,0,1,5,32,315,4496, %T A384751 73281,0,1,6,45,496,8025,172672,3919453,0,1,7,60,725,12672,304803, %U A384751 9107008,271474953,0,1,8,77,1008,18665,477504,15874605,622823168,23404227185,0 %N A384751 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of e.g.f. B(x)^k, where B(x) is the e.g.f. of A384749. %F A384751 A(n,0) = 0^n; A(n,k) = k * Sum_{j=0..n} (2*n-2*j+k)^(j-1) * binomial(n,j) * A(n-j,2*j). %e A384751 Square array begins: %e A384751 1, 1, 1, 1, 1, 1, ... %e A384751 0, 1, 2, 3, 4, 5, ... %e A384751 0, 5, 12, 21, 32, 45, ... %e A384751 0, 73, 176, 315, 496, 725, ... %e A384751 0, 1881, 4496, 8025, 12672, 18665, ... %e A384751 0, 73281, 172672, 304803, 477504, 699925, ... %o A384751 (PARI) a(n, k) = if(k==0, 0^n, k*sum(j=0, n, (2*n-2*j+k)^(j-1)*binomial(n, j)*a(n-j, 2*j))); %Y A384751 Columns k=0..1 give A000007, A384749. %K A384751 nonn,tabl %O A384751 0,8 %A A384751 _Seiichi Manyama_, Jun 09 2025