This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A384761 #11 Jun 09 2025 10:33:31 %S A384761 1,1,0,1,-1,0,1,-2,1,0,1,-3,4,5,0,1,-4,9,4,-35,0,1,-5,16,-9,-104,-281, %T A384761 0,1,-6,25,-40,-171,-112,5671,0,1,-7,36,-95,-176,717,14164,42671,0,1, %U A384761 -8,49,-180,-35,2176,20619,-18104,-2179127,0 %N A384761 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of e.g.f. B(x)^k, where B(x) is the e.g.f. of A384760. %F A384761 A(n,0) = 0^n; A(n,k) = (-1)^n * k * Sum_{j=0..n} (n+k)^(j-1) * binomial(n,j) * A(n-j,j). %e A384761 Square array begins: %e A384761 1, 1, 1, 1, 1, 1, ... %e A384761 0, -1, -2, -3, -4, -5, ... %e A384761 0, 1, 4, 9, 16, 25, ... %e A384761 0, 5, 4, -9, -40, -95, ... %e A384761 0, -35, -104, -171, -176, -35, ... %e A384761 0, -281, -112, 717, 2176, 3875, ... %o A384761 (PARI) a(n, k) = if(k==0, 0^n, (-1)^n*k*sum(j=0, n, (n+k)^(j-1)*binomial(n, j)*a(n-j, j))); %Y A384761 Columns k=0..1 give A000007, A384760. %Y A384761 Cf. A379168. %K A384761 sign,tabl %O A384761 0,8 %A A384761 _Seiichi Manyama_, Jun 09 2025