cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A384763 Product of the Euler totients of the unitary divisors of n.

This page as a plain text file.
%I A384763 #16 Jun 15 2025 22:59:33
%S A384763 1,1,2,2,4,4,6,4,6,16,10,16,12,36,64,8,16,36,18,64,144,100,22,64,20,
%T A384763 144,18,144,28,4096,30,16,400,256,576,144,36,324,576,256,40,20736,42,
%U A384763 400,576,484,46,256,42,400,1024,576,52,324,1600,576,1296,784,58,65536
%N A384763 Product of the Euler totients of the unitary divisors of n.
%C A384763 a(n) is the product of phi(d) over all unitary divisors d of n; i.e., those divisors satisfying gcd(d, n/d) = 1.
%C A384763 a(n) is upper bounded by A061537(n) (product of phi(d) over all divisors d of n).
%C A384763 The function is not multiplicative.
%C A384763 The sum of the totients over all unitary divisors d of n is A055653(n).
%F A384763 a(n) = Product_{d|n} phi(d) if gcd(n,floor(n/d)) = 1.
%F A384763 a(p) = p-1 for p prime.
%F A384763 a(p^k) = p^k-p^(k-1).
%F A384763 a(n) = phi(n)^(2^(omega(n)-1)) = A000010(n)^(A034444(n)/2). - _Amiram Eldar_, Jun 09 2025
%e A384763 For n = 6, a(6) = phi(1) * phi(2) * phi(3) * phi(6) = 1*1*2*2 = 4.
%t A384763 a[n_] := EulerPhi[n]^(2^(PrimeNu[n] - 1)); Array[a, 100] (* _Amiram Eldar_, Jun 09 2025 *)
%o A384763 (Python)
%o A384763 from sympy import totient, divisors, gcd
%o A384763 def a(n):
%o A384763    prod = 1
%o A384763    for d in divisors(n):
%o A384763       if gcd(d, n//d) == 1:
%o A384763           prod *= totient(d)
%o A384763    return prod
%o A384763 print([a(n) for n in range(1, 61)])
%o A384763 (PARI) a(n) = my(p=1); fordiv(n, d, if (gcd(d,n/d) == 1, p*=eulerphi(d))); p; \\ _Michel Marcus_, Jun 09 2025
%Y A384763 Cf. A000010, A034444, A055653, A061537, A077610.
%K A384763 nonn
%O A384763 1,3
%A A384763 _DarĂ­o Clavijo_, Jun 09 2025