This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A384763 #16 Jun 15 2025 22:59:33 %S A384763 1,1,2,2,4,4,6,4,6,16,10,16,12,36,64,8,16,36,18,64,144,100,22,64,20, %T A384763 144,18,144,28,4096,30,16,400,256,576,144,36,324,576,256,40,20736,42, %U A384763 400,576,484,46,256,42,400,1024,576,52,324,1600,576,1296,784,58,65536 %N A384763 Product of the Euler totients of the unitary divisors of n. %C A384763 a(n) is the product of phi(d) over all unitary divisors d of n; i.e., those divisors satisfying gcd(d, n/d) = 1. %C A384763 a(n) is upper bounded by A061537(n) (product of phi(d) over all divisors d of n). %C A384763 The function is not multiplicative. %C A384763 The sum of the totients over all unitary divisors d of n is A055653(n). %F A384763 a(n) = Product_{d|n} phi(d) if gcd(n,floor(n/d)) = 1. %F A384763 a(p) = p-1 for p prime. %F A384763 a(p^k) = p^k-p^(k-1). %F A384763 a(n) = phi(n)^(2^(omega(n)-1)) = A000010(n)^(A034444(n)/2). - _Amiram Eldar_, Jun 09 2025 %e A384763 For n = 6, a(6) = phi(1) * phi(2) * phi(3) * phi(6) = 1*1*2*2 = 4. %t A384763 a[n_] := EulerPhi[n]^(2^(PrimeNu[n] - 1)); Array[a, 100] (* _Amiram Eldar_, Jun 09 2025 *) %o A384763 (Python) %o A384763 from sympy import totient, divisors, gcd %o A384763 def a(n): %o A384763 prod = 1 %o A384763 for d in divisors(n): %o A384763 if gcd(d, n//d) == 1: %o A384763 prod *= totient(d) %o A384763 return prod %o A384763 print([a(n) for n in range(1, 61)]) %o A384763 (PARI) a(n) = my(p=1); fordiv(n, d, if (gcd(d,n/d) == 1, p*=eulerphi(d))); p; \\ _Michel Marcus_, Jun 09 2025 %Y A384763 Cf. A000010, A034444, A055653, A061537, A077610. %K A384763 nonn %O A384763 1,3 %A A384763 _DarĂo Clavijo_, Jun 09 2025