cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A384785 The number of unordered factorizations of the n-th cubefull number into 1 and prime powers p^e where p is prime and e >= 3 (A246549).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 3, 1, 1, 4, 1, 1, 2, 1, 1, 5, 1, 1, 2, 1, 1, 6, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 9, 1, 1, 2, 1, 2, 3, 1, 3, 1, 2, 10, 1, 1, 1, 2, 1, 1, 2, 1, 4, 1, 2, 2, 2, 13, 1, 1, 2, 1, 1, 4, 1, 3, 1, 2, 2, 1, 1, 1, 5, 1, 1, 1, 1, 2, 3, 17, 2
Offset: 1

Views

Author

Amiram Eldar, Jun 10 2025

Keywords

Comments

The positive values of the multiplicative function f(n) with f(p^e) = A008483(e). Or, equivalently, a(n) is the value of this function at A036966(n).

Examples

			a(6) = 2 since the 6th cubefull number, A036966(6) = 64, has 2 factorizations: 2^3 * 2^3 and 2^6.
a(12) = 3 since the 12th cubefull number, A036966(12) = 256, has 3 factorizations: 2^3 * 2^5, 2^4 * 2^4, and 2^8.
		

Crossrefs

Cf. A008483, A036966, A246549, A384783 (powerful analog), A384786.

Programs

  • Mathematica
    f[p_, e_] := PartitionsP[e] - PartitionsP[e-1] - PartitionsP[e-2] + PartitionsP[e-3]; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; seq[lim_] := Module[{cub = Union[Flatten[Table[i^3*j^4*k^5, {k, 1, Surd[lim, 5]}, {j, 1, Surd[lim/k^5, 4]}, {i, 1, Surd[lim/(j^4*k^5), 3]}]]]}, Select[s /@ cub, # > 0 &]]; seq[10^5]
  • PARI
    s(n) = vecprod(apply(x -> numbpart(x)-numbpart(x-1)-numbpart(x-2)+numbpart(x-3), factor(n)[, 2]));
    cubs(lim) = {my(c = List()); for(k = 1, sqrtnint(lim, 5), for(j = 1, sqrtnint(lim \ k^5, 4), for(i = 1, sqrtnint(lim \ (j^4*k^5), 3), listput(c, i^3*j^4*k^5)))); Set(c); }
    list(lim) = {my(c = cubs(lim), v = List(), s1); for(k = 1, #c, s1 = s(c[k]); if(s1 > 0, listput(v, s1))); Vec(v);}