This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A384808 #14 Jul 27 2025 17:59:56 %S A384808 1,1,0,1,1,0,1,2,5,0,1,3,12,13,0,1,4,21,56,-63,0,1,5,32,135,128,-2279, %T A384808 0,1,6,45,256,753,-3888,-51167,0,1,7,60,425,2016,-1797,-135752, %U A384808 -423387,0,1,8,77,648,4145,8224,-224775,-2099032,13717889,0,1,9,96,931,7392,31725,-256016,-5236809,3294432,885044593,0 %N A384808 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of e.g.f. B(x)^k, where B(x) is the e.g.f. of A384617. %F A384808 Let b(n,k) = 0^n if n*k=0, otherwise b(n,k) = (-1)^n * k * Sum_{j=1..n} (-n+j+k)^(j-1) * binomial(n,j) * b(n-j,2*j). Then A(n,k) = b(n,-k). %e A384808 Square array begins: %e A384808 1, 1, 1, 1, 1, 1, ... %e A384808 0, 1, 2, 3, 4, 5, ... %e A384808 0, 5, 12, 21, 32, 45, ... %e A384808 0, 13, 56, 135, 256, 425, ... %e A384808 0, -63, 128, 753, 2016, 4145, ... %e A384808 0, -2279, -3888, -1797, 8224, 31725, ... %o A384808 (PARI) b(n, k) = if(n*k==0, 0^n, (-1)^n*k*sum(j=1, n, (-n+j+k)^(j-1)*binomial(n, j)*b(n-j, 2*j))); %o A384808 a(n, k) = b(n, -k); %Y A384808 Columns k=0..1 give A000007, A384617. %K A384808 sign,tabl %O A384808 0,8 %A A384808 _Seiichi Manyama_, Jun 10 2025