This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A384814 #13 Jul 25 2025 02:18:22 %S A384814 28,56,66,88,90,114,132,174,220,234,238,246,284,306,308,312,340,348, %T A384814 356,496,532,534,552,618,620,654,668,728,752,760,786,812,856,963,990, %U A384814 992,996,1052,1092,1148,1180,1196,1210,1220,1232,1244,1288,1320,1326,1364,1372,1474,1494,1580 %N A384814 Integers k such that there exists an integer 0<m<k such that (1/sigma(m) + 1/sigma(k))*(m+k) = 2. %C A384814 The numbers m and k form a HM(1,2)-amicable pair (HM = harmonic mean). See Dimitrov link. An amicable pair forms a HM(1,2)-amicable pair, so the larger member of an amicable pair A002046 is a term of this sequence. %H A384814 Robert Israel, <a href="/A384814/b384814.txt">Table of n, a(n) for n = 1..250</a> %H A384814 S. I. Dimitrov, <a href="https://arxiv.org/abs/2408.07387">Generalizations of amicable numbers</a>, arXiv:2408.07387 [math.NT], 2024. %e A384814 (20, 28) is such a pair because (1/sigma(20) + 1/sigma(28))*(20+28) = 2. %p A384814 S:= map(numtheory:-sigma,[$1..3000]): %p A384814 filter:= proc(k) %p A384814 ormap(m -> (1/S[m] + 1/S[k])*(m+k) = 2, [$1..k-1]) %p A384814 end proc: %p A384814 select(filter, [$1..3000]); # _Robert Israel_, Jul 25 2025 %o A384814 (PARI) isok(k) = for(m=1, k-1, if ((1/sigma(m) + 1/sigma(k))*(m+k) == 2, return(1))); \\ _Michel Marcus_, Jun 10 2025 %Y A384814 Cf. A000203, A000396, A002025, A002046, A383964. %K A384814 nonn %O A384814 1,1 %A A384814 _S. I. Dimitrov_, Jun 10 2025