cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A384815 Sum of the cubes of the exponents in the prime factorization of n.

This page as a plain text file.
%I A384815 #15 Jul 03 2025 08:40:19
%S A384815 0,1,1,8,1,2,1,27,8,2,1,9,1,2,2,64,1,9,1,9,2,2,1,28,8,2,27,9,1,3,1,
%T A384815 125,2,2,2,16,1,2,2,28,1,3,1,9,9,2,1,65,8,9,2,9,1,28,2,28,2,2,1,10,1,
%U A384815 2,9,216,2,3,1,9,2,3,1,35,1,2,9,9,2,3,1,65,64,2,1,10,2,2,2,28,1,10
%N A384815 Sum of the cubes of the exponents in the prime factorization of n.
%H A384815 Amiram Eldar, <a href="/A384815/b384815.txt">Table of n, a(n) for n = 1..10000</a>
%H A384815 R. L. Duncan, <a href="https://www.jstor.org/stable/2312731">A class of additive arithmetical functions</a>, The American Mathematical Monthly, Vol. 69, No. 1 (1962), pp. 34-36.
%H A384815 <a href="/index/Eu#epf">Index entries for sequences computed from exponents in factorization of n</a>.
%F A384815 If n = Product (p_j^k_j) then a(n) = Sum (k_j^3).
%F A384815 From _Amiram Eldar_, Jul 03 2025: (Start)
%F A384815 Additive with a(p^e) = e^3.
%F A384815 Sum_{k=1..n} a(k) ~ n * log(log(n)) + B_3 * n + O(n/log(n)), where B_3 = gamma + Sum_{p prime} ((1-1/p)*Sum_{m>=1} m^3/p^m + log(1-1/p)) = 16.17021843694072992072..., and gamma is Euler's constant (A001620) (Duncan, 1962). (End)
%t A384815 Join[{0}, Table[Plus @@ (#[[2]]^3 & /@ FactorInteger[n]), {n, 2, 90}]]
%o A384815 (PARI) a(n) = my(f=factor(n)); sum(k=1, #f~, f[k,2]^3); \\ _Michel Marcus_, Jun 10 2025
%Y A384815 Cf. A001222, A001620, A005064, A090885, A360970.
%K A384815 nonn,easy
%O A384815 1,4
%A A384815 _Ilya Gutkovskiy_, Jun 10 2025