cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A384816 Sum of the cubes of the indices of distinct prime factors of n.

This page as a plain text file.
%I A384816 #7 Jun 16 2025 19:14:43
%S A384816 0,1,8,1,27,9,64,1,8,28,125,9,216,65,35,1,343,9,512,28,72,126,729,9,
%T A384816 27,217,8,65,1000,36,1331,1,133,344,91,9,1728,513,224,28,2197,73,2744,
%U A384816 126,35,730,3375,9,64,28,351,217,4096,9,152,65,520,1001,4913,36,5832,1332,72,1,243,134,6859,344,737,92
%N A384816 Sum of the cubes of the indices of distinct prime factors of n.
%H A384816 <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a>.
%F A384816 If n = Product (p_j^k_j) then a(n) = Sum (pi(p_j)^3), where pi = A000720.
%F A384816 G.f.: Sum_{k>=1} k^3 * x^prime(k) / (1 - x^prime(k)).
%t A384816 Table[Plus @@ (PrimePi[#[[1]]]^3 & /@ FactorInteger[n]), {n, 70}]
%t A384816 nmax = 70; CoefficientList[Series[Sum[k^3 x^Prime[k]/(1 - x^Prime[k]), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
%o A384816 (PARI) a(n) = my(f=factor(n)[,1]); sum(k=1, #f~, primepi(f[k])^3); \\ _Michel Marcus_, Jun 10 2025
%Y A384816 Cf. A000720, A005064, A066328, A332385.
%K A384816 nonn
%O A384816 1,3
%A A384816 _Ilya Gutkovskiy_, Jun 10 2025