cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A384817 Numerator of the sum of the reciprocals of all square divisors of all positive integers <= n.

This page as a plain text file.
%I A384817 #7 Jun 16 2025 18:52:58
%S A384817 1,2,3,17,21,25,29,17,173,191,209,463,499,535,571,2473,2617,2777,2921,
%T A384817 3101,3245,3389,3533,3713,96569,100169,34723,36223,37423,38623,39823,
%U A384817 20699,21299,21899,22499,69997,71797,73597,75397,77647,79447,81247,83047,85297
%N A384817 Numerator of the sum of the reciprocals of all square divisors of all positive integers <= n.
%F A384817 G.f. for fractions: (1/(1 - x)) * Sum_{k>=1} x^(k^2) / (k^2*(1 - x^(k^2))).
%F A384817 a(n) is the numerator of Sum_{k=1..floor(sqrt(n))} floor(n/k^2) / k^2.
%F A384817 a(n) / A384818(n) ~ Pi^4 * n / 90.
%e A384817 1, 2, 3, 17/4, 21/4, 25/4, 29/4, 17/2, 173/18, 191/18, 209/18, 463/36, ...
%t A384817 nmax = 44; CoefficientList[Series[1/(1 - x) Sum[x^(k^2)/(k^2 (1 - x^(k^2))), {k, 1, nmax}], {x, 0, nmax}], x] // Numerator // Rest
%t A384817 Table[Sum[Floor[n/k^2]/k^2, {k, 1, Floor[Sqrt[n]]}], {n, 1, 44}] // Numerator
%o A384817 (PARI) a(n) = numerator(sum(k=1, n, sumdiv(k, d, if (issquare(d), 1/d)))); \\ _Michel Marcus_, Jun 10 2025
%Y A384817 Cf. A007406, A017667, A284648, A309125, A373439, A384818 (denominators).
%K A384817 nonn,frac
%O A384817 1,2
%A A384817 _Ilya Gutkovskiy_, Jun 10 2025