cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A384818 Denominator of the sum of the reciprocals of all square divisors of all positive integers <= n.

This page as a plain text file.
%I A384818 #7 Jun 16 2025 18:53:04
%S A384818 1,1,1,4,4,4,4,2,18,18,18,36,36,36,36,144,144,144,144,144,144,144,144,
%T A384818 144,3600,3600,1200,1200,1200,1200,1200,600,600,600,600,1800,1800,
%U A384818 1800,1800,1800,1800,1800,1800,1800,600,600,600,1200,58800,58800,58800,58800,58800
%N A384818 Denominator of the sum of the reciprocals of all square divisors of all positive integers <= n.
%F A384818 G.f. for fractions: (1/(1 - x)) * Sum_{k>=1} x^(k^2) / (k^2*(1 - x^(k^2))).
%F A384818 a(n) is the denominator of Sum_{k=1..floor(sqrt(n))} floor(n/k^2) / k^2.
%F A384818 A384817(n) / a(n) ~ Pi^4 * n / 90.
%e A384818 1, 2, 3, 17/4, 21/4, 25/4, 29/4, 17/2, 173/18, 191/18, 209/18, 463/36, ...
%t A384818 nmax = 53; CoefficientList[Series[1/(1 - x) Sum[x^(k^2)/(k^2 (1 - x^(k^2))), {k, 1, nmax}], {x, 0, nmax}], x] // Denominator // Rest
%t A384818 Table[Sum[Floor[n/k^2]/k^2, {k, 1, Floor[Sqrt[n]]}], {n, 1, 53}] // Denominator
%o A384818 (PARI) a(n) = denominator(sum(k=1, n, sumdiv(k, d, if (issquare(d), 1/d)))); \\ _Michel Marcus_, Jun 10 2025
%Y A384818 Cf. A007407, A017668, A284650, A309125, A373440, A384817 (numerators).
%K A384818 nonn,frac
%O A384818 1,4
%A A384818 _Ilya Gutkovskiy_, Jun 10 2025