cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A384830 G.f. satisfies A(x) = A(x^3 - 3*x*A(x)^3) / A(x^2 - 2*x*A(x)^2).

This page as a plain text file.
%I A384830 #10 Jul 16 2025 03:42:21
%S A384830 1,-1,4,-21,110,-616,3738,-23619,152470,-1003776,6726702,-45720504,
%T A384830 314307018,-2181641134,15269811260,-107651952999,763745165826,
%U A384830 -5448656285938,39063995033178,-281309141648214,2033846965665156,-14757571862304042,107431429198117338,-784411267743868602,5743068864740600214
%N A384830 G.f. satisfies A(x) = A(x^3 - 3*x*A(x)^3) / A(x^2 - 2*x*A(x)^2).
%C A384830 Compare to C(x) = C(x^3 + 3*x*C(x)^3) / C(x^2 + 2*x*C(x)^2), where C(x) = x + C(x)^2 is the g.f. of the Catalan numbers (A000108).
%C A384830 Conjectures:
%C A384830 (C.1) a(n) is odd iff n = 2^k for k >= 0.
%C A384830 (C.2) a(n) == 1 (mod 3) iff n = 3^k for k >= 0.
%C A384830 (C.3) a(n) == 2 (mod 3) iff n = A038464(k)/2 for k >= 1, where A038464 lists sums of 2 distinct powers of 3.
%H A384830 Paul D. Hanna, <a href="/A384830/b384830.txt">Table of n, a(n) for n = 1..731</a>
%F A384830 a(n) ~ (-1)^(n+1) * c * d^n / n^(3/2), where d = 7.79529565596481925683030276174290122793451926009119... and c = 0.0350717712305315691918705178165312896756485548321... - _Vaclav Kotesovec_, Jul 16 2025
%e A384830 G.f.: A(x)  = x - x^2 + 4*x^3 - 21*x^4 + 110*x^5 - 616*x^6 + 3738*x^7 - 23619*x^8 + 152470*x^9 - 1003776*x^10 + 6726702*x^11 - 45720504*x^12 + 314307018*x^13 - 2181641134*x^14 + 15269811260*x^15 - 107651952999*x^16 +- ...
%e A384830 where A(x) = A(x^3 - 3*x*A(x)^3) / A(x^2 - 2*x*A(x)^2).
%e A384830 RELATED SERIES.
%e A384830 A(x)^2 = x^2 - 2*x^3 + 9*x^4 - 50*x^5 + 278*x^6 - 1620*x^7 + 10029*x^8 - 64262*x^9 + 420054*x^10 - 2793960*x^11 + 18874530*x^12 + ...
%e A384830 A(x)^3 = x^3 - 3*x^4 + 15*x^5 - 88*x^6 + 516*x^7 - 3123*x^8 + 19771*x^9 - 128748*x^10 + 853182*x^11 - 5739306*x^12 + ...
%e A384830 A(x^3 - 3*x*A(x)^3) = x^3 - 3*x^4 + 9*x^5 - 46*x^6 + 270*x^7 - 1575*x^8 + 9517*x^9 - 60228*x^10 + 391950*x^11 - 2595666*x^12 + ...
%e A384830 A(x^2 - 2*x*A(x)^2) = x^2 - 2*x^3 + 3*x^4 - 14*x^5 + 92*x^6 - 528*x^7 + 3027*x^8 - 18674*x^9 + 120414*x^10 - 790332*x^11 + 5264400*x^12 + ...
%e A384830 A(x)^2 / A(x^2 - 2*x*A(x)^2) = 1 + 6*x^2 - 24*x^3 + 120*x^4 - 696*x^5 + 4362*x^6 - 27720*x^7 + 179496*x^8 - 1188324*x^9 + 8004222*x^10 - 54609300*x^11 + 376571358*x^12 + ...
%e A384830 which also equals A(x)^3 / A(x^3 - 3*x*A(x)^3).
%e A384830 SPECIFIC VALUES.
%e A384830 A(t) = 1/9 at t = 0.121516943263807312205895948801335726496880098390997...
%e A384830 A(t) = 1/10 at t = 0.10853522544585482043493483988448061537900985360239...
%e A384830   where 1/10 = A(t^3 - 3*t/10^3) / A(t^2 - 2*t/10^2).
%e A384830 A(1/8) = 0.11406786932603073004140288621992624859772243547241...
%e A384830   where A(1/8) = A(1/8^3 - 3/8*A(1/8)^3) / A(1/8^2 - 2/8*A(1/8)^2).
%e A384830 A(1/9) = 0.10221632839303036250437950418981106643715860663579...
%e A384830 A(1/10) = 0.09261382926552257152263444179118404183078004746053...
%e A384830 A(1/11) = 0.08467305103076088485212166668503171895257965884840...
%e A384830 A(1/12) = 0.07799525781645435314575205510854905593664831977089...
%e A384830 A(-1/8) = -0.1721552141574965794714379396217931153561352397408...
%e A384830 A(-1/9) = -0.1381403570271418152616530595087372513703838778026...
%e A384830 A(-1/10) = -0.1188984739221037989978618004289786780166116550840...
%o A384830 (PARI) {a(n) = my(A=[0, 1], Ax=x); for(i=1, n, A=concat(A, 0); Ax=Ser(A);
%o A384830 A[#A] = polcoeff( subst(Ax, x, x^3 - 3*x*Ax^3 ) - Ax*subst(Ax, x, x^2 - 2*x*Ax^2 ), #A+1)); A[n+1]}
%o A384830 for(n=1, 25, print1(a(n), ", "))
%Y A384830 Cf. A038464, A376226, A384270.
%K A384830 sign
%O A384830 1,3
%A A384830 _Paul D. Hanna_, Jul 11 2025