A384842 a(n) is the n-th number which can be represented as the sum of n distinct n-almost primes in exactly n ways, or -1 if fewer than n such numbers exist.
2, 24, 75, 211, 522, 1332, 3588, 8900, 20552, 48304, 118768, 256864, 558272, 1564608, 2863360
Offset: 1
Examples
For n = 2, the first number that is the sum of two distinct semiprimes in exactly two ways is A365494(2) = 19, and the second is a(2) = 24 = 9 + 15 = 10 + 14.
Programs
-
Maple
f:= proc(n) uses priqueue; local pq, S, t, x, y, k, i, p, v, R; initialize(pq); insert([-2^n, 2$n], pq); S[0]:= 1: for i from 1 to n do S[i]:= 0 od: do t:= extract(pq); x:= -t[1]; for i from n to 1 by -1 do S[i]:= expand(S[i] + S[i-1] * y^x); od; if type(S[n], `+`) then R:= select(t -> degree(t, y) < x and eval(t, y=1) = n, convert(S[n], list)); if nops(R) >= n then R:= sort(map(t -> degree(t,y), R)); return R[n] fi; fi; p:= nextprime(t[-1]); for i from n+1 to 2 by -1 while t[i] = t[-1] do v:= x*(p/t[-1])^(n+2-i); insert([-v, op(t[2..i-1]), p$(n+2-i)], pq) od; od; end proc: map(f, [$1..15]);