cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A384854 The number of divisors d of n such that (-d)^d == d (mod n).

This page as a plain text file.
%I A384854 #22 Aug 22 2025 17:38:39
%S A384854 1,2,1,1,1,2,1,1,1,2,1,2,1,2,2,1,1,2,1,1,1,2,1,1,1,2,1,2,1,5,1,1,1,2,
%T A384854 2,2,1,2,1,1,1,2,1,1,1,2,1,2,1,2,1,1,1,2,1,2,1,2,1,1,1,2,1,1,1,3,1,1,
%U A384854 1,3,1,1,1,2,1,1,1,2,1,2,1,2,1,3,1,2,1,1,1,3,2,1,1,2,1,1,1,2,1,1
%N A384854 The number of divisors d of n such that (-d)^d == d (mod n).
%H A384854 Robert Israel, <a href="/A384854/b384854.txt">Table of n, a(n) for n = 1..10000</a>
%F A384854 a(n) = 1 + number of proper divisors h of n such that (-h)^h = h (mod n).
%p A384854 a:= n-> add(`if`((-d)&^d-d mod n=0, 1, 0), d=numtheory[divisors](n)):
%p A384854 seq(a(n), n=1..100);  # _Alois P. Heinz_, Jun 10 2025
%o A384854 (Magma) [1+#[s: s in [1..n-1] | n mod s eq 0 and Modexp((-s), s, n) eq s]: n in [1..100]];
%o A384854 (PARI) a(n) = sumdiv(n, d, Mod(-d, n)^d == d); \\ _Michel Marcus_, Jun 11 2025
%Y A384854 Cf. A000005, A032741, A065295, A384237, A384781.
%K A384854 nonn,changed
%O A384854 1,2
%A A384854 _Juri-Stepan Gerasimov_, Jun 10 2025