This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A384859 #15 Jun 12 2025 08:28:42 %S A384859 1,1,0,1,1,0,1,2,7,0,1,3,16,10,0,1,4,27,62,-503,0,1,5,40,162,-632, %T A384859 -8564,0,1,6,55,316,-135,-20758,-103751,0,1,7,72,530,1264,-31572, %U A384859 -413900,3479554,0,1,8,91,810,3865,-34316,-919647,2636678,327940225,0,1,9,112,1162,7992,-20500,-1552472,-5475222,679001872,8613464536,0 %N A384859 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of e.g.f. B(x)^k, where B(x) is the e.g.f. of A384855. %F A384859 Let b(n,k) = 0^n if n*k=0, otherwise b(n,k) = (-1)^n * k * Sum_{j=1..n} (-n+j+k)^(j-1) * binomial(n,j) * b(n-j,3*j). Then A(n,k) = b(n,-k). %e A384859 Square array begins: %e A384859 1, 1, 1, 1, 1, 1, ... %e A384859 0, 1, 2, 3, 4, 5, ... %e A384859 0, 7, 16, 27, 40, 55, ... %e A384859 0, 10, 62, 162, 316, 530, ... %e A384859 0, -503, -632, -135, 1264, 3865, ... %e A384859 0, -8564, -20758, -31572, -34316, -20500, ... %o A384859 (PARI) b(n, k) = if(n*k==0, 0^n, (-1)^n*k*sum(j=1, n, (-n+j+k)^(j-1)*binomial(n, j)*b(n-j, 3*j))); %o A384859 a(n, k) = b(n, -k); %Y A384859 Columns k=0..1 give A000007, A384855. %Y A384859 Cf. A384801, A384808. %K A384859 sign,tabl %O A384859 0,8 %A A384859 _Seiichi Manyama_, Jun 10 2025