This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A384861 #17 Jun 12 2025 08:29:55 %S A384861 1,1,0,1,1,0,1,2,7,0,1,3,16,46,0,1,4,27,134,361,0,1,5,40,270,1384, %T A384861 -6284,0,1,6,55,460,3321,-2518,-632951,0,1,7,72,710,6448,18468, %U A384861 -1223180,-31583474,0,1,8,91,1026,11065,65524,-1591407,-72713338,-1484748191,0 %N A384861 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of e.g.f. B(x)^k, where B(x) is the e.g.f. of A384857. %F A384861 Let b(n,k) = 0^n if n*k=0, otherwise b(n,k) = (-1)^n * k * Sum_{j=1..n} (-3*n+3*j+k)^(j-1) * binomial(n,j) * b(n-j,3*j). Then A(n,k) = b(n,-k). %e A384861 Square array begins: %e A384861 1, 1, 1, 1, 1, 1, ... %e A384861 0, 1, 2, 3, 4, 5, ... %e A384861 0, 7, 16, 27, 40, 55, ... %e A384861 0, 46, 134, 270, 460, 710, ... %e A384861 0, 361, 1384, 3321, 6448, 11065, ... %e A384861 0, -6284, -2518, 18468, 65524, 149300, ... %o A384861 (PARI) b(n, k) = if(n*k==0, 0^n, (-1)^n*k*sum(j=1, n, (-3*n+3*j+k)^(j-1)*binomial(n, j)*b(n-j, 3*j))); %o A384861 a(n, k) = b(n, -k); %Y A384861 Columns k=0..1 give A000007, A384857. %Y A384861 Cf. A384802, A384813. %K A384861 sign,tabl %O A384861 0,8 %A A384861 _Seiichi Manyama_, Jun 10 2025