cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A384869 For n >= 1, a(n) = Sum_{k = 1..n} gcd(n, floor((n/k)*10^x)), where x = A121341(k/gcd(n,k)).

Original entry on oeis.org

1, 3, 7, 8, 17, 21, 31, 27, 53, 33, 71, 58, 85, 74, 103, 75, 129, 118, 145, 70, 209, 141, 199, 146, 197, 194, 309, 191, 281, 175, 301, 206, 427, 271, 339, 297, 397, 306, 503, 157, 481, 432, 505, 336, 559, 395, 553, 388, 607, 303, 777, 454, 677, 620, 605, 467
Offset: 1

Views

Author

Ctibor O. Zizka, Jun 11 2025

Keywords

Comments

a(n) < n^2 - n + 1.

Examples

			For n = 12:
k = 4, x = A121341(4/gcd(12,4)) = 0, gcd(12, floor((12/4)*10^0)) = 3;
k = 5, x = A121341(5/gcd(12,5)) = 1, gcd(12, floor((12/5)*10^1)) = 12;
and so on.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Max[IntegerExponent[n, 2], IntegerExponent[n, 5]] + Length[RealDigits[1/n][[1, -1]]]; a[n_] := Sum[GCD[n, Floor[(n/k)*10^f[k/GCD[n, k]]]], {k, 1, n}]; Array[a, 100] (* Amiram Eldar, Jun 19 2025 *)