This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A384873 #30 Jun 23 2025 22:21:42 %S A384873 2,11,113,1117,11113,111119,1111151,11111117,111111113,1111111121, %T A384873 11111111113,111111111149,1111111111139,11111111111123, %U A384873 111111111111229,1111111111111123,11111111111111119,111111111111111131,1111111111111111111,11111111111111111131 %N A384873 a(n) is the smallest n-digit zeroless prime. %C A384873 This sequence differs from A096497: besides differing in the repunit primes (A004022), it also excludes terms containing the digit 0, such as A096497(53). %C A384873 Repunits primes (A004022) are in this sequence. In fact, a(A004023(k)) = A004022(k), for all k >= 1. %C A384873 With the exception of a(1) = 2, the terms begin with strings of 1's. The first term to include all positive even digits is a(1756) = 111....126843. %H A384873 Gonzalo MartÃnez, <a href="/A384873/b384873.txt">Table of n, a(n) for n = 1..100</a> %e A384873 The list of 3-digit prime numbers starts with 101, 103, 107, 109, and 113. Among these, 113 is the first that does not contain the digit 0. So, a(3) = 113. %p A384873 f:= proc(n) local x; %p A384873 for x from (10^n-1)/9 by 2 do %p A384873 if isprime(x) and not member(0,convert(x,base,10)) then return x fi %p A384873 od %p A384873 end proc: %p A384873 f(1):= 2: %p A384873 map(f, [$1..20]); # _Robert Israel_, Jun 12 2025 %t A384873 a[n_]:=Module[{k=PrimePi[10^n/9-1]},Until[DigitCount[Prime[k],10,0]==0,k++];Prime[k]] (* _James C. McMahon_, Jun 21 2025 *) %o A384873 (Python) %o A384873 from itertools import product %o A384873 from sympy import isprime %o A384873 def a(n): %o A384873 for t in product('123456789', repeat=n): %o A384873 p = int(''.join(t)) %o A384873 if isprime(p): return p %o A384873 print([a(n) for n in range(1, 21)]) %o A384873 (Python) %o A384873 from sympy import nextprime %o A384873 def A384873(n): %o A384873 m = nextprime((10**n-1)//9-1) %o A384873 while '0' in str(m): %o A384873 m = nextprime(m) %o A384873 return m # _Chai Wah Wu_, Jun 20 2025 %o A384873 (PARI) a(n) = forprime(p=(10^n-1)/9, , if (vecmin(digits(p)), return(p))); \\ _Michel Marcus_, Jun 15 2025 %Y A384873 Cf. A052382, A068693, A096497, A004022. %K A384873 nonn,base %O A384873 1,1 %A A384873 _Gonzalo MartÃnez_, Jun 11 2025