cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A384875 Irregular triangle T(n,k) = 2^(floor(n/3)-k) * nextprime(2^(n-2*(floor(n/3)-k))), with k = 0..floor(n/3)-1.

This page as a plain text file.
%I A384875 #22 Jul 06 2025 10:01:56
%S A384875 6,10,22,20,34,44,74,68,134,88,148,262,136,268,514,296,524,1042,272,
%T A384875 536,1028,2062,592,1048,2084,4106,1072,2056,4124,8198,1184,2096,4168,
%U A384875 8212,16418,2144,4112,8248,16396,32822,4192,8336,16424,32836,65542,4288,8224,16496,32792,65644,131074
%N A384875 Irregular triangle T(n,k) = 2^(floor(n/3)-k) * nextprime(2^(n-2*(floor(n/3)-k))), with k = 0..floor(n/3)-1.
%H A384875 Michael De Vlieger, <a href="/A384875/b384875.txt">Table of n, a(n) for n = 3..10377</a> (rows n = 3..250, flattened).
%H A384875 Michael De Vlieger, <a href="/A384875/a384875.png">Log log scatterplot</a> showing the first 2380 terms.
%F A384875 A010846(T(n,k)) = n+2.
%e A384875 Table begins:
%e A384875   n\k     0      1      2      3       4
%e A384875  ---------------------------------------
%e A384875   3:      6
%e A384875   4:     10
%e A384875   5:     22
%e A384875   6:     20     34
%e A384875   7:     44     74
%e A384875   8:     68    134
%e A384875   9:     88    148    262
%e A384875  10:    136    268    514
%e A384875  11:    296    524   1042
%e A384875  12:    272    536   1028   2062
%e A384875  13:    592   1048   2084   4106
%e A384875  14:   1072   2056   4124   8198
%e A384875  15:   1184   2096   4168   8212   16418
%e A384875  ...
%e A384875 Let S = A010846.
%e A384875 Tables showing terms in row a(n) of A162306, listed in order of row a(n) of A275280.
%e A384875 T(3,1) = 6,
%e A384875 S(6) = 5:
%e A384875  1  2  4
%e A384875  3  6
%e A384875 T(4,1) = 10,
%e A384875 S(10) = 6:
%e A384875  1  2  4  8
%e A384875  5 10
%e A384875 T(5,1) = 22,
%e A384875 S(22) = 7:
%e A384875  1  2  4  8  16
%e A384875 11 22
%e A384875 T(6,1) = 20,               T(6,2) = 34,
%e A384875 S(20) = 8:                 S(34) = 8:
%e A384875  1  2  4  8  16             1  2  4  8  16  32
%e A384875  5 10 20                   17 34
%e A384875 T(7,1) = 44,               T(7,2) = 74,
%e A384875 S(44) = 9:                 S(74) = 9:
%e A384875  1  2  4  8  16  32         1  2  4  8  16  32  64
%e A384875 11 22 44                   37 74
%e A384875 T(8,1) = 68,               T(8,2) = 134,
%e A384875 S(68) = 10:                S(134) = 10:
%e A384875  1  2  4  8  16  32  64     1  2  4  8  ...  128
%e A384875 17 34 68                   67 134
%e A384875 T(9,1) = 88,               T(9,2) = 148,            T(9,3) = 262,
%e A384875 S(88) = 11:                S(148) = 11:             S(262) = 11:
%e A384875  1  2  4  8  16  32  64     1  2  4  8  ...  128      1   2  ... 256
%e A384875 11 22 44 88                37 74 148                131 262
%e A384875 etc.
%t A384875 Table[2^k*NextPrime[2^(n - 2*k)], {n, 3, 18}, {k, Floor[n/3], 1, -1}] // TableForm
%Y A384875 Cf. A006881, A010846, A100484.
%K A384875 nonn,tabf,easy
%O A384875 3,1
%A A384875 _Michael De Vlieger_, Jun 11 2025