This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A384877 #9 Jun 18 2025 07:35:50 %S A384877 1,1,1,1,1,2,1,1,1,1,1,1,2,2,1,2,1,1,2,1,1,1,1,1,1,1,1,1,2,2,1,2,2,3, %T A384877 1,2,1,1,2,1,1,2,1,2,1,1,2,1,1,1,1,2,1,1,1,1,1,1,1,1,1,1,1,1,2,2,1,2, %U A384877 2,3,1,2,1,1,2,2,3,3,1,3,1,2,2,2 %N A384877 Irregular triangle read by rows where row k lists the lengths of maximal anti-runs (increasing by more than 1) in the binary indices of n. %C A384877 A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. %e A384877 The binary indices of 182 are {2,3,5,6,8}, with maximal anti-runs ((2),(3,5),(6,8)) so row 182 is (1,2,2). %e A384877 Triangle begins: %e A384877 0: () %e A384877 1: (1) %e A384877 2: (1) %e A384877 3: (1,1) %e A384877 4: (1) %e A384877 5: (2) %e A384877 6: (1,1) %e A384877 7: (1,1,1) %e A384877 8: (1) %e A384877 9: (2) %e A384877 10: (2) %e A384877 11: (1,2) %e A384877 12: (1,1) %e A384877 13: (2,1) %e A384877 14: (1,1,1) %e A384877 15: (1,1,1,1) %t A384877 bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1]; %t A384877 Table[Length/@Split[bpe[n],#2!=#1+1&],{n,0,100}] %Y A384877 Row-sums are A000120. %Y A384877 Positions of rows of the form (1,1,...) are A023758. %Y A384877 Positions of first appearances of each distinct row appear to be A052499. %Y A384877 For runs instead of anti-runs we have A245563, reverse A245562. %Y A384877 Row-lengths are A384890. %Y A384877 A355394 counts partitions without a neighborless part, singleton case A355393. %Y A384877 A356606 counts strict partitions without a neighborless part, complement A356607. %Y A384877 A384175 counts subsets with all distinct lengths of maximal runs, complement A384176. %Y A384877 Cf. A044813, A048793, A069010, A164707, A243815, A246029, A328592, A384177, A384877, A384879, A384893. %K A384877 nonn,tabf %O A384877 0,6 %A A384877 _Gus Wiseman_, Jun 17 2025