cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A384881 Triangle read by rows where T(n,k) is the number of integer partitions of n with k maximal runs of consecutive parts decreasing by 1.

This page as a plain text file.
%I A384881 #13 Aug 19 2025 11:59:07
%S A384881 1,0,1,0,1,1,0,2,0,1,0,1,3,0,1,0,2,2,2,0,1,0,2,3,3,2,0,1,0,2,5,3,2,2,
%T A384881 0,1,0,1,8,4,4,2,2,0,1,0,3,5,10,4,3,2,2,0,1,0,2,9,9,9,5,3,2,2,0,1,0,2,
%U A384881 11,13,9,9,4,3,2,2,0,1
%N A384881 Triangle read by rows where T(n,k) is the number of integer partitions of n with k maximal runs of consecutive parts decreasing by 1.
%H A384881 John Tyler Rascoe, <a href="/A384881/b384881.txt">Rows n = 0..100, flattened</a>
%F A384881 G.f.: 1 + Sum_{m>0} B(m,q,t)/(1 - q^m) where B(m,q,t) = t * (q^tri(m) + Sum_{i=1..m-1} q^tri(i) * B(m-i,q,t) * ((q^((m-i)*(i-1))/(1 - q^(m-i))) - q^((m-i)*i))) and tri(n) = A000217(n). - _John Tyler Rascoe_, Aug 18 2025
%e A384881 The partition (5,4,2,1,1) has maximal runs ((5,4),(2,1),(1)) so is counted under T(13,3) = 23.
%e A384881 Row n = 9 counts the following partitions:
%e A384881   9    63    333    6111    33111   411111   3111111   111111111
%e A384881   54   72    441    22221   51111   2211111  21111111
%e A384881   432  81    522    42111   222111
%e A384881        621   531    321111
%e A384881        3321  711
%e A384881              3222
%e A384881              4221
%e A384881              4311
%e A384881              5211
%e A384881              32211
%e A384881 Triangle begins:
%e A384881   1
%e A384881   0  1
%e A384881   0  1  1
%e A384881   0  2  0  1
%e A384881   0  1  3  0  1
%e A384881   0  2  2  2  0  1
%e A384881   0  2  3  3  2  0  1
%e A384881   0  2  5  3  2  2  0  1
%e A384881   0  1  8  4  4  2  2  0  1
%e A384881   0  3  5 10  4  3  2  2  0  1
%e A384881   0  2  9  9  9  5  3  2  2  0  1
%e A384881   0  2 11 13  9  9  4  3  2  2  0  1
%e A384881   0  2 13 15 17  8 10  4  3  2  2  0  1
%e A384881   0  2 14 23 16 17  8  9  4  3  2  2  0  1
%e A384881   0  2 16 26 26 19 16  9  9  4  3  2  2  0  1
%e A384881   0  4 13 37 32 26 19 16  8  9  4  3  2  2  0  1
%t A384881 Table[Length[Select[IntegerPartitions[n],Length[Split[#,#1==#2+1&]]==k&]],{n,0,10},{k,0,n}]
%o A384881 (PARI)
%o A384881 tri(n) = {(n*(n+1)/2)}
%o A384881 B_list(N) = {my(v = vector(N, i, 0)); v[1] = q*t; for(m=2,N, v[m] = t * (q^tri(m) + sum(i=1,m-1, q^tri(i) * v[m-i] * (q^((m-i)*(i-1))/(1 - q^(m-i)) - q^((m-i)*i) + O('q^(N-tri(i)+1)))))); v}
%o A384881 A_qt(max_row) = {my(N = max_row+1, B = B_list(N), g = 1 + sum(m=1,N, B[m]/(1 - q^m)) + O('q^(N+1))); vector(N, n, Vecrev(polcoeff(g, n-1)))} \\ _John Tyler Rascoe_, Aug 18 2025
%Y A384881 Row sums are A000041.
%Y A384881 Column k = 1 is A001227.
%Y A384881 For distinct parts instead of maximal runs we have A116608.
%Y A384881 The strict case appears to be A116674.
%Y A384881 For anti-runs instead of runs we have A268193.
%Y A384881 Partitions with distinct runs of this type are counted by A384882, gapless A384884.
%Y A384881 For prime indices see A385213, A287170, A066205, A356229.
%Y A384881 A007690 counts partitions with no singletons, complement A183558.
%Y A384881 A034296 counts flat or gapless partitions, ranks A066311 or A073491.
%Y A384881 Cf. A000009, A000217, A008284, A047966, A047993, A098859, A325325, A375136, A384887.
%K A384881 nonn,easy,tabl
%O A384881 0,8
%A A384881 _Gus Wiseman_, Jun 25 2025