This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A384882 #5 Jun 21 2025 00:41:45 %S A384882 1,1,1,2,2,3,2,5,4,5,6,9,7,12,12,11,16,18,17,25,25,23,33,35,36,42,52, %T A384882 45,58,64,60,77,91,79,109,108,105,129,149,134,170,179,177,213,236,208, %U A384882 275,281,282,323,359,330,410,433,440,474,541,508,614,631,635 %N A384882 Number of integer partitions of n with all distinct lengths of maximal runs of consecutive parts decreasing by 1 but not by 0. %e A384882 The partition (6,5,5,5,3,2) has maximal runs ((6,5),(5),(5),(3,2)), with lengths (2,1,1,2), so is not counted under a(26). %e A384882 The partition (6,5,5,5,4,3,2) has maximal runs ((6,5),(5),(5,4,3,2)), with lengths (2,1,4), so is counted under a(30). %e A384882 The a(1) = 1 through a(13) = 12 partitions: %e A384882 1 2 3 4 5 6 7 8 9 A B C D %e A384882 21 211 32 321 43 332 54 433 65 543 76 %e A384882 221 322 431 432 532 443 651 544 %e A384882 421 521 621 541 542 732 643 %e A384882 3211 3321 721 632 921 652 %e A384882 4321 821 6321 832 %e A384882 4322 43221 A21 %e A384882 5321 4432 %e A384882 43211 5431 %e A384882 7321 %e A384882 43321 %e A384882 432211 %t A384882 Table[Length[Select[IntegerPartitions[n],UnsameQ@@Length/@Split[#,#2==#1-1&]&]],{n,0,30}] %Y A384882 For subsets instead of strict partitions we have A384175, equal lengths A243815. %Y A384882 The strict case is A384178, for anti-runs A384880. %Y A384882 Counting gaps of 0 gives A384884, equal A384887. %Y A384882 For equal instead of distinct lengths we have A384904, strict case A384886. %Y A384882 A000041 counts integer partitions, strict A000009. %Y A384882 A047993 counts partitions with max part = length (A106529). %Y A384882 A098859 counts Wilf partitions (complement A336866), compositions A242882. %Y A384882 A239455 counts Look-and-Say or section-sum partitions, ranks A351294 or A381432. %Y A384882 Cf. A008284, A047966, A089259, A325325, A382857, A383013, A383708. %K A384882 nonn %O A384882 0,4 %A A384882 _Gus Wiseman_, Jun 20 2025