A384884 Number of integer partitions of n with all distinct lengths of maximal gapless runs (decreasing by 0 or 1).
1, 1, 2, 3, 4, 6, 9, 13, 18, 25, 35, 46, 60, 79, 104, 131, 170, 215, 271, 342, 431, 535, 670, 830, 1019, 1258, 1547, 1881, 2298, 2787, 3359, 4061, 4890, 5849, 7010, 8361, 9942, 11825, 14021, 16558, 19561, 23057, 27084, 31821, 37312, 43627, 50999, 59500, 69267
Offset: 0
Keywords
Examples
The partition y = (6,6,4,3,3,2) has maximal gapless runs ((6,6),(4,3,3,2)), with lengths (2,4), so y is counted under a(24). The a(1) = 1 through a(8) = 18 partitions: (1) (2) (3) (4) (5) (6) (7) (8) (11) (21) (22) (32) (33) (43) (44) (111) (211) (221) (222) (322) (332) (1111) (311) (321) (331) (422) (2111) (411) (421) (431) (11111) (2211) (511) (521) (3111) (2221) (611) (21111) (3211) (2222) (111111) (4111) (3221) (22111) (4211) (31111) (5111) (211111) (22211) (1111111) (32111) (41111) (221111) (311111) (2111111) (11111111)
Crossrefs
Programs
-
Mathematica
Table[Length[Select[IntegerPartitions[n],UnsameQ@@Length/@Split[#,#2>=#1-1&]&]],{n,0,15}]