This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A384887 #6 Jun 16 2025 23:50:57 %S A384887 1,1,2,3,5,6,9,10,14,18,21,26,35,39,46,58,68,79,97,111,131,155,177, %T A384887 206,246,278,318,373,423,483,563,632,722,827,931,1058,1209,1354,1528, %U A384887 1736,1951,2188,2475,2762,3097,3488,3886,4342,4876,5414,6038,6741,7482 %N A384887 Number of integer partitions of n with all equal lengths of maximal gapless runs (decreasing by 0 or 1). %e A384887 The partition y = (6,5,5,5,3,3,2,1) has maximal gapless runs ((6,5,5,5),(3,3,2,1)), with lengths (4,4), so y is counted under a(30). %e A384887 The a(1) = 1 through a(8) = 14 partitions: %e A384887 (1) (2) (3) (4) (5) (6) (7) (8) %e A384887 (11) (21) (22) (32) (33) (43) (44) %e A384887 (111) (31) (41) (42) (52) (53) %e A384887 (211) (221) (51) (61) (62) %e A384887 (1111) (2111) (222) (322) (71) %e A384887 (11111) (321) (2221) (332) %e A384887 (2211) (3211) (2222) %e A384887 (21111) (22111) (3221) %e A384887 (111111) (211111) (3311) %e A384887 (1111111) (22211) %e A384887 (32111) %e A384887 (221111) %e A384887 (2111111) %e A384887 (11111111) %t A384887 Table[Length[Select[IntegerPartitions[n],SameQ@@Length/@Split[#,#2>=#1-1&]&]],{n,0,15}] %Y A384887 The strict case is A384886, distinct A384178. %Y A384887 For distinct instead of equal lengths we have A384884. %Y A384887 For anti-runs instead of runs we have A384888, distinct A384885. %Y A384887 For subsets instead of strict partitions we have A243815. %Y A384887 Without counting decreases by 0 we get A384904. %Y A384887 A000041 counts integer partitions, strict A000009. %Y A384887 A007690 counts partitions with no singletons, complement A183558. %Y A384887 A034296 counts flat or gapless partitions, ranks A066311 or A073491. %Y A384887 A098859 counts Wilf partitions (distinct multiplicities), complement A336866. %Y A384887 A355394 counts partitions without a neighborless part, singleton case A355393. %Y A384887 A356236 counts partitions with a neighborless part, singleton case A356235. %Y A384887 A356606 counts strict partitions without a neighborless part, complement A356607. %Y A384887 Cf. A008284, A044813, A047993, A325324, A325325, A356226, A356230, A356233, A356234, A384175, A384177, A384880. %K A384887 nonn %O A384887 0,3 %A A384887 _Gus Wiseman_, Jun 15 2025