This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A384888 #6 Jun 16 2025 23:50:45 %S A384888 1,1,2,3,5,6,9,10,13,17,20,24,32,36,44,55,64,75,92,105,125,147,169, %T A384888 195,231,263,303,351,401,458,532,600,686,784,889,1010,1152,1296,1468, %U A384888 1662,1875,2108,2384,2669,3001,3373,3775,4222,4734,5278,5896,6576,7322 %N A384888 Number of integer partitions of n with all equal lengths of maximal anti-runs (decreasing by more than 1). %e A384888 The partition y = (10,6,6,4,3,1) has maximal anti-runs ((10,6),(6,4),(3,1)), with lengths (2,2,2), so y is counted under a(30). %e A384888 The a(1) = 1 through a(8) = 13 partitions: %e A384888 (1) (2) (3) (4) (5) (6) (7) (8) %e A384888 (11) (21) (22) (32) (33) (43) (44) %e A384888 (111) (31) (41) (42) (52) (53) %e A384888 (211) (221) (51) (61) (62) %e A384888 (1111) (2111) (222) (322) (71) %e A384888 (11111) (321) (2221) (332) %e A384888 (2211) (3211) (2222) %e A384888 (21111) (22111) (3221) %e A384888 (111111) (211111) (22211) %e A384888 (1111111) (32111) %e A384888 (221111) %e A384888 (2111111) %e A384888 (11111111) %t A384888 Table[Length[Select[IntegerPartitions[n],SameQ@@Length/@Split[#,#2<#1-1&]&]],{n,0,15}] %Y A384888 The strict case is new, distinct A384880. %Y A384888 For distinct instead of equal lengths we have A384885. %Y A384888 For runs instead of anti-runs we have A384887, distinct A384884. %Y A384888 For subsets instead of strict partitions we have A384889, distinct A384177, runs A243815. %Y A384888 A000041 counts integer partitions, strict A000009. %Y A384888 A007690 counts partitions with no singletons, complement A183558. %Y A384888 A034296 counts flat or gapless partitions, ranks A066311 or A073491. %Y A384888 A098859 counts Wilf partitions (distinct multiplicities), complement A336866. %Y A384888 A239455 counts Look-and-Say or section-sum partitions, ranks A351294 or A381432. %Y A384888 A355394 counts partitions without a neighborless part, singleton case A355393. %Y A384888 A356236 counts partitions with a neighborless part, singleton case A356235. %Y A384888 A356606 counts strict partitions without a neighborless part, complement A356607. %Y A384888 Cf. A008284, A044813, A047993, A242882, A287170, A325325, A356226, A384175, A384176, A384178, A384886. %K A384888 nonn %O A384888 0,3 %A A384888 _Gus Wiseman_, Jun 15 2025