This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A384889 #15 Jun 22 2025 15:08:25 %S A384889 1,2,4,8,14,23,37,59,93,146,230,365,584,940,1517,2450,3959,6404,10373, %T A384889 16822,27298,44297,71843,116429,188550,305200,493930,799422,1294108, %U A384889 2095291,3392736,5493168,8892148,14390372,23282110,37660759,60914308,98528312,159386110 %N A384889 Number of subsets of {1..n} with all equal lengths of maximal anti-runs (increasing by more than 1). %H A384889 Christian Sievers, <a href="/A384889/b384889.txt">Table of n, a(n) for n = 0..1000</a> %F A384889 G.f.: ( Sum_{i>=1} (1/(1-x^(2*i-1)/(1-x)^(i-1))-1) + 1-x ) / (1-x)^2. - _Christian Sievers_, Jun 21 2025 %e A384889 The subset {3,6,7,9,10,12} has maximal anti-runs ((3,6),(7,9),(10,12)), with lengths (2,2,2), so is counted under a(12). %e A384889 The a(0) = 1 through a(4) = 14 subsets: %e A384889 {} {} {} {} {} %e A384889 {1} {1} {1} {1} %e A384889 {2} {2} {2} %e A384889 {1,2} {3} {3} %e A384889 {1,2} {4} %e A384889 {1,3} {1,2} %e A384889 {2,3} {1,3} %e A384889 {1,2,3} {1,4} %e A384889 {2,3} %e A384889 {2,4} %e A384889 {3,4} %e A384889 {1,2,3} %e A384889 {2,3,4} %e A384889 {1,2,3,4} %t A384889 Table[Length[Select[Subsets[Range[n]],SameQ@@Length/@Split[#,#2!=#1+1&]&]],{n,0,10}] %o A384889 (PARI) lista(n)=Vec(sum(i=1,(n+1)\2,1/(1-x^(2*i-1)/(1-x)^(i-1))-1,1-x+O(x*x^n))/(1-x)^2) \\ _Christian Sievers_, Jun 20 2025 %Y A384889 For runs instead of anti-runs we have A243815, distinct A384175, complement A384176. %Y A384889 For distinct instead or equal lengths we have A384177, ranks A384879. %Y A384889 For partitions instead of subsets we have A384888. %Y A384889 A034296 counts flat or gapless partitions, ranks A066311 or A073491. %Y A384889 A034839 counts subsets by number of maximal runs, for strict partitions A116674. %Y A384889 A047966 counts uniform partitions (equal multiplicities), ranks A072774. %Y A384889 A384893 counts subsets by number of maximal anti-runs, for partitions A268193, A384905. %Y A384889 Cf. A010027, A044813, A047993, A356606, A384880, A384886, A384890. %K A384889 nonn %O A384889 0,2 %A A384889 _Gus Wiseman_, Jun 18 2025 %E A384889 a(21) and beyond from _Christian Sievers_, Jun 20 2025