This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A384891 #13 Jun 22 2025 15:13:33 %S A384891 1,1,1,3,3,5,23,25,43,63,345,365,665,949,1513,8175,9003,15929,23399, %T A384891 36949,51043,293715,314697,570353,826817,1318201,1810393,2766099, %U A384891 14180139,15600413,27707879,40501321,63981955,88599903,134362569,181491125,923029217 %N A384891 Number of permutations of {1..n} with all distinct lengths of maximal runs (increasing by 1). %H A384891 Christian Sievers, <a href="/A384891/b384891.txt">Table of n, a(n) for n = 0..5000</a> %F A384891 a(n) = Sum_{k=1..n} ( T(n,k) * A000255(k-1) ) for n>=1, where T(n,k) is the number of compositions of n into k distinct parts (cf. A072574). - _Christian Sievers_, Jun 22 2025 %e A384891 The permutation (1,2,6,7,8,9,3,4,5) has maximal runs ((1,2),(6,7,8,9),(3,4,5)), with lengths (2,4,3), so is counted under a(9). %e A384891 The a(0) = 1 through a(7) = 25 permutations: %e A384891 () (1) (12) (123) (1234) (12345) (123456) (1234567) %e A384891 (231) (2341) (23451) (123564) (1234675) %e A384891 (312) (4123) (34512) (123645) (1234756) %e A384891 (45123) (124563) (1245673) %e A384891 (51234) (126345) (1273456) %e A384891 (145623) (1456723) %e A384891 (156234) (1672345) %e A384891 (231456) (2314567) %e A384891 (234156) (2345167) %e A384891 (234561) (2345671) %e A384891 (312456) (3124567) %e A384891 (345126) (3456127) %e A384891 (345612) (3456712) %e A384891 (412356) (4567123) %e A384891 (451236) (4567231) %e A384891 (456231) (4567312) %e A384891 (456312) (5123467) %e A384891 (561234) (5612347) %e A384891 (562341) (5671234) %e A384891 (564123) (6712345) %e A384891 (612345) (6723451) %e A384891 (634512) (6751234) %e A384891 (645123) (7123456) %e A384891 (7345612) %e A384891 (7561234) %t A384891 Table[Length[Select[Permutations[Range[n]],UnsameQ@@Length/@Split[#,#2==#1+1&]&]],{n,0,10}] %o A384891 (PARI) lista(n)=my(b(n)=sum(i=0,n-1,(-1)^i*(n-i)!*binomial(n-1,i)), d=floor(sqrt(2*n)), p=prod(i=1,n,1+x*y^i,1+O(y*y^n)*((1-x^(n+1))/(1-x))+O(x*x^d))); Vec(1+sum(i=1,d,i!*b(i)*polcoef(p,i))) \\ _Christian Sievers_, Jun 22 2025 %Y A384891 Counting by number of maximal anti-runs gives A010027, for runs A123513. %Y A384891 For subsets instead of permutations we have A384175, complement A384176. %Y A384891 For partitions we have A384884 (anti-runs A384885), strict A384178 (anti-runs A384880). %Y A384891 For equal instead of distinct lengths we have A384892. %Y A384891 For anti-runs instead of runs we have A384907. %Y A384891 A000041 counts integer partitions, strict A000009. %Y A384891 A034839 counts subsets by number of maximal runs, for strict partitions A116674. %Y A384891 A098859 counts Wilf partitions (distinct multiplicities), complement A336866. %Y A384891 A356606 counts strict partitions without a neighborless part, complement A356607. %Y A384891 A384893 counts subsets by number of maximal anti-runs, for partitions A268193, A384905. %Y A384891 Cf. A000255, A044813, A072574, A242882, A287170, A325324, A325325, A328592, A329739, A351202, A384177, A384886. %K A384891 nonn %O A384891 0,4 %A A384891 _Gus Wiseman_, Jun 19 2025 %E A384891 a(11) and beyond from _Christian Sievers_, Jun 22 2025