This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A384893 #8 Jun 22 2025 14:37:51 %S A384893 1,1,1,1,2,1,1,4,2,1,1,7,5,2,1,1,12,10,6,2,1,1,20,20,13,7,2,1,1,33,38, %T A384893 29,16,8,2,1,1,54,71,60,39,19,9,2,1,1,88,130,122,86,50,22,10,2,1,1, %U A384893 143,235,241,187,116,62,25,11,2,1,1,232,420,468,392,267,150,75,28,12,2,1 %N A384893 Triangle read by rows where T(n,k) is the number of subsets of {1..n} with k maximal anti-runs (increasing by more than 1). %e A384893 The subset {3,6,7,9,11,12} has maximal anti-runs ((3,6),(7,9,11),(12)), so is counted under T(12,3). %e A384893 The subset {3,6,7,9,10,12} has maximal anti-runs ((3,6),(7,9),(10,12)), so is counted under T(12,3). %e A384893 Row n = 5 counts the following subsets: %e A384893 {} {1} {1,2} {1,2,3} {1,2,3,4} {1,2,3,4,5} %e A384893 {2} {2,3} {2,3,4} {2,3,4,5} %e A384893 {3} {3,4} {3,4,5} %e A384893 {4} {4,5} {1,2,3,5} %e A384893 {5} {1,2,4} {1,2,4,5} %e A384893 {1,3} {1,2,5} {1,3,4,5} %e A384893 {1,4} {1,3,4} %e A384893 {1,5} {1,4,5} %e A384893 {2,4} {2,3,5} %e A384893 {2,5} {2,4,5} %e A384893 {3,5} %e A384893 {1,3,5} %e A384893 Triangle begins: %e A384893 1 %e A384893 1 1 %e A384893 1 2 1 %e A384893 1 4 2 1 %e A384893 1 7 5 2 1 %e A384893 1 12 10 6 2 1 %e A384893 1 20 20 13 7 2 1 %e A384893 1 33 38 29 16 8 2 1 %e A384893 1 54 71 60 39 19 9 2 1 %e A384893 1 88 130 122 86 50 22 10 2 1 %e A384893 1 143 235 241 187 116 62 25 11 2 1 %e A384893 1 232 420 468 392 267 150 75 28 12 2 1 %e A384893 1 376 744 894 806 588 363 188 89 31 13 2 1 %t A384893 Table[Length[Select[Subsets[Range[n]],Length[Split[#,#2!=#1+1&]]==k&]],{n,0,10},{k,0,n}] %Y A384893 Column k = 1 is A000071. %Y A384893 Row sums are A000079. %Y A384893 Column k = 2 is A001629. %Y A384893 For runs instead of anti-runs we have A034839, for strict partitions A116674. %Y A384893 The case containing n is A053538. %Y A384893 For integer partitions instead of subsets we have A268193, strict A384905. %Y A384893 A384175 counts subsets with all distinct lengths of maximal runs, complement A384176. %Y A384893 A384877 gives lengths of maximal anti-runs in binary indices, firsts A384878. %Y A384893 Cf. A010027, A384177, A384879, A384889, A384890. %K A384893 nonn,tabl %O A384893 0,5 %A A384893 _Gus Wiseman_, Jun 21 2025