This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A384899 #14 Jun 12 2025 10:23:04 %S A384899 1,1,0,1,1,0,1,2,2,0,1,3,5,1,0,1,4,9,6,-4,0,1,5,14,16,-2,-14,0,1,6,20, %T A384899 32,12,-32,-30,0,1,7,27,55,45,-39,-103,12,0,1,8,35,86,105,-12,-211, %U A384899 -100,330,0,1,9,44,126,201,81,-318,-411,552,1139,0,1,10,54,176,343,282,-350,-956,342,3038,2226,0 %N A384899 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of B(x)^k, where B(x) is the g.f. of A384894. %F A384899 Let b(n,k) = 0^n if n*k=0, otherwise b(n,k) = (-1)^n * k * Sum_{j=1..n} binomial(-n+2*j+k-1,j-1) * b(n-j,2*j)/j. Then A(n,k) = b(n,-k). %e A384899 Square array begins: %e A384899 1, 1, 1, 1, 1, 1, ... %e A384899 0, 1, 2, 3, 4, 5, ... %e A384899 0, 2, 5, 9, 14, 20, ... %e A384899 0, 1, 6, 16, 32, 55, ... %e A384899 0, -4, -2, 12, 45, 105, ... %e A384899 0, -14, -32, -39, -12, 81, ... %o A384899 (PARI) b(n, k) = if(n*k==0, 0^n, (-1)^n*k*sum(j=1, n, binomial(-n+2*j+k-1,j-1)*b(n-j,2*j)/j)); %o A384899 a(n, k) = b(n, -k); %Y A384899 Columns k=0..1 give A000007, A384894. %K A384899 sign,tabl %O A384899 0,8 %A A384899 _Seiichi Manyama_, Jun 12 2025