This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A384900 #13 Jun 12 2025 10:22:57 %S A384900 1,1,0,1,1,0,1,2,2,0,1,3,5,3,0,1,4,9,10,4,0,1,5,14,22,18,-3,0,1,6,20, %T A384900 40,48,14,-50,0,1,7,27,65,101,72,-81,-237,0,1,8,35,98,185,200,-37, %U A384900 -562,-872,0,1,9,44,140,309,436,174,-873,-2420,-2375,0 %N A384900 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of B(x)^k, where B(x) is the g.f. of A384895. %F A384900 Let b(n,k) = 0^n if n*k=0, otherwise b(n,k) = (-1)^n * k * Sum_{j=1..n} binomial(-2*n+3*j+k-1,j-1) * b(n-j,2*j)/j. Then A(n,k) = b(n,-k). %e A384900 Square array begins: %e A384900 1, 1, 1, 1, 1, 1, ... %e A384900 0, 1, 2, 3, 4, 5, ... %e A384900 0, 2, 5, 9, 14, 20, ... %e A384900 0, 3, 10, 22, 40, 65, ... %e A384900 0, 4, 18, 48, 101, 185, ... %e A384900 0, -3, 14, 72, 200, 436, ... %o A384900 (PARI) b(n, k) = if(n*k==0, 0^n, (-1)^n*k*sum(j=1, n, binomial(-2*n+3*j+k-1,j-1)*b(n-j,2*j)/j)); %o A384900 a(n, k) = b(n, -k); %Y A384900 Columns k=0..1 give A000007, A384895. %K A384900 sign,tabl %O A384900 0,8 %A A384900 _Seiichi Manyama_, Jun 12 2025