This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A384901 #12 Jun 12 2025 10:23:07 %S A384901 1,1,0,1,1,0,1,2,3,0,1,3,7,0,0,1,4,12,6,-23,0,1,5,18,19,-37,-51,0,1,6, %T A384901 25,40,-33,-148,27,0,1,7,33,70,-1,-264,-186,920,0,1,8,42,110,70,-360, %U A384901 -681,1588,5469,0,1,9,52,161,192,-384,-1446,1437,13469,4836,0 %N A384901 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of B(x)^k, where B(x) is the g.f. of A384896. %F A384901 Let b(n,k) = 0^n if n*k=0, otherwise b(n,k) = (-1)^n * k * Sum_{j=1..n} binomial(-n+2*j+k-1,j-1) * b(n-j,3*j)/j. Then A(n,k) = b(n,-k). %e A384901 Square array begins: %e A384901 1, 1, 1, 1, 1, 1, ... %e A384901 0, 1, 2, 3, 4, 5, ... %e A384901 0, 3, 7, 12, 18, 25, ... %e A384901 0, 0, 6, 19, 40, 70, ... %e A384901 0, -23, -37, -33, -1, 70, ... %e A384901 0, -51, -148, -264, -360, -384, ... %o A384901 (PARI) b(n, k) = if(n*k==0, 0^n, (-1)^n*k*sum(j=1, n, binomial(-n+2*j+k-1,j-1)*b(n-j,3*j)/j)); %o A384901 a(n, k) = b(n, -k); %Y A384901 Columns k=0..1 give A000007, A384896. %K A384901 sign,tabl %O A384901 0,8 %A A384901 _Seiichi Manyama_, Jun 12 2025