This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A384903 #16 Jun 12 2025 10:22:54 %S A384903 1,1,0,1,1,0,1,2,3,0,1,3,7,6,0,1,4,12,18,10,0,1,5,18,37,41,-39,0,1,6, %T A384903 25,64,102,-22,-546,0,1,7,33,100,203,96,-1074,-3563,0,1,8,42,146,355, %U A384903 372,-1419,-8332,-18918,0,1,9,52,203,570,876,-1338,-13974,-48606,-68472,0 %N A384903 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of B(x)^k, where B(x) is the g.f. of A384898. %F A384903 Let b(n,k) = 0^n if n*k=0, otherwise b(n,k) = (-1)^n * k * Sum_{j=1..n} binomial(-3*n+4*j+k-1,j-1) * b(n-j,3*j)/j. Then A(n,k) = b(n,-k). %e A384903 Square array begins: %e A384903 1, 1, 1, 1, 1, 1, ... %e A384903 0, 1, 2, 3, 4, 5, ... %e A384903 0, 3, 7, 12, 18, 25, ... %e A384903 0, 6, 18, 37, 64, 100, ... %e A384903 0, 10, 41, 102, 203, 355, ... %e A384903 0, -39, -22, 96, 372, 876, ... %o A384903 (PARI) b(n, k) = if(n*k==0, 0^n, (-1)^n*k*sum(j=1, n, binomial(-3*n+4*j+k-1,j-1)*b(n-j,3*j)/j)); %o A384903 a(n, k) = b(n, -k); %Y A384903 Columns k=0..1 give A000007, A384898. %Y A384903 Cf. A384901, A384902. %Y A384903 Cf. A384865. %K A384903 sign,tabl %O A384903 0,8 %A A384903 _Seiichi Manyama_, Jun 12 2025