This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A384906 #11 Jul 12 2025 08:37:02 %S A384906 0,1,1,1,1,2,1,1,1,1,1,2,1,1,2,1,1,2,1,1,1,1,1,2,1,1,1,1,1,3,1,1,1,1, %T A384906 2,2,1,1,1,1,1,2,1,1,2,1,1,2,1,1,1,1,1,2,1,1,1,1,1,3,1,1,1,1,1,2,1,1, %U A384906 1,2,1,2,1,1,2,1,2,2,1,1,1,1,1,2,1,1,1 %N A384906 Number of maximal anti-runs of consecutive parts not increasing by 1 in the prime indices of n (with multiplicity). %C A384906 First differs from A300820 at a(462) = 3, A300820(462) = 2. %C A384906 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %e A384906 The prime indices of 462 are {1,2,4,5}, with maximal anti-runs ((1),(2,4),(5)), so a(462) = 3. %t A384906 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A384906 Table[Length[Split[prix[n],#2!=#1+1&]],{n,100}] %Y A384906 For the strict case we have A356228. %Y A384906 For binary instead of prime indices we have A384890 (for runs A069010). %Y A384906 For runs instead of anti-runs we have A385213. %Y A384906 A034839 counts subsets by number of maximal runs, for strict partitions A116674. %Y A384906 A055396 gives least prime index, greatest A061395. %Y A384906 A056239 adds up prime indices, row sums of A112798. %Y A384906 A384877 gives lengths of maximal anti-runs in binary indices, firsts A384878. %Y A384906 Cf. A130091, A245562, A268193, A300820, A351202, A356607, A382525, A384177, A384321, A384893. %K A384906 nonn %O A384906 1,6 %A A384906 _Gus Wiseman_, Jun 22 2025