cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A384909 Decimal expansion of the volume of an elongated pentagonal orthobicupola with unit edge.

This page as a plain text file.
%I A384909 #9 Jun 12 2025 10:17:13
%S A384909 1,2,3,4,2,2,9,9,4,7,9,6,0,4,5,1,9,7,6,8,3,0,4,6,2,4,6,6,5,0,6,7,3,0,
%T A384909 9,5,4,0,6,0,4,2,4,6,5,0,4,9,9,3,1,8,2,0,3,3,2,9,2,4,2,0,2,8,6,4,8,4,
%U A384909 5,1,9,4,5,5,4,2,1,4,6,7,1,6,2,0,2,2,3,7,0,1
%N A384909 Decimal expansion of the volume of an elongated pentagonal orthobicupola with unit edge.
%C A384909 The elongated pentagonal orthobicupola is Johnson solid J_38.
%C A384909 Also the volume of an elongated pentagonal gyrobicupola (Johnson solid J_39) with unit edge.
%H A384909 Paolo Xausa, <a href="/A384909/b384909.txt">Table of n, a(n) for n = 2..10000</a>
%H A384909 Wikipedia, <a href="https://en.wikipedia.org/wiki/Elongated_pentagonal_gyrobicupola">Elongated pentagonal gyrobicupola</a>.
%H A384909 Wikipedia, <a href="https://en.wikipedia.org/wiki/Elongated_pentagonal_orthobicupola">Elongated pentagonal orthobicupola</a>.
%F A384909 Equals (10 + 8*sqrt(5) + 15*sqrt(5 + 2*sqrt(5)))/6 = (10 + 8*A002163 + 15*sqrt(5 + A010476))/6.
%F A384909 Equals the largest root of 1296*x^4 - 8640*x^3 - 82440*x^2 - 109200*x + 76525.
%e A384909 12.342299479604519768304624665067309540604246504993...
%t A384909 First[RealDigits[(10 + 8*Sqrt[5] + 15*Sqrt[5 + Sqrt[20]])/6, 10, 100]] (* or *)
%t A384909 First[RealDigits[PolyhedronData["J38", "Volume"], 10, 100]]
%Y A384909 Cf. A384625 (surface area - 10).
%Y A384909 Cf. A002163, A010476, A384283, A384624, A384871.
%K A384909 nonn,cons,easy
%O A384909 2,2
%A A384909 _Paolo Xausa_, Jun 12 2025