cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A384910 Decimal expansion of the volume of an elongated pentagonal orthocupolarotunda with unit edge.

This page as a plain text file.
%I A384910 #8 Jun 17 2025 11:54:51
%S A384910 1,6,9,3,6,0,1,7,1,2,9,3,9,6,0,2,8,7,0,7,2,7,8,1,7,1,5,8,3,2,8,2,4,3,
%T A384910 3,3,8,3,8,5,1,3,7,6,9,4,1,3,6,8,4,9,2,9,9,3,1,6,2,2,5,9,8,8,7,2,0,9,
%U A384910 0,7,6,8,1,6,3,1,6,4,8,7,5,0,3,2,4,9,8,4,7,6
%N A384910 Decimal expansion of the volume of an elongated pentagonal orthocupolarotunda with unit edge.
%C A384910 The elongated pentagonal orthocupolarotunda is Johnson solid J_40.
%C A384910 Also the volume of an elongated pentagonal gyrocupolarotunda (Johnson solid J_41) with unit edge.
%H A384910 Paolo Xausa, <a href="/A384910/b384910.txt">Table of n, a(n) for n = 2..10000</a>
%H A384910 Wikipedia, <a href="https://en.wikipedia.org/wiki/Elongated_pentagonal_gyrocupolarotunda">Elongated pentagonal gyrocupolarotunda</a>.
%H A384910 Wikipedia, <a href="https://en.wikipedia.org/wiki/Elongated_pentagonal_orthocupolarotunda">Elongated pentagonal orthocupolarotunda</a>.
%F A384910 Equals (5/12)*(11 + 5*sqrt(5) + 6*sqrt(5 + 2*sqrt(5))) = (5/12)*(11 + 5*A002163 + 6*sqrt(5 + A010476)).
%F A384910 Equals the largest root of 1296*x^4 - 23760*x^3 + 26100*x^2 + 84000*x - 111875.
%e A384910 16.936017129396028707278171583282433383851376941...
%t A384910 First[RealDigits[5/12*(11 + 5*Sqrt[5] + 6*Sqrt[5 + Sqrt[20]]), 10, 100]] (* or *)
%t A384910 First[RealDigits[PolyhedronData["J40", "Volume"], 10, 100]]
%Y A384910 Cf. A384911 (surface area).
%Y A384910 Cf. A002163, A010476, A384283, A384285, A384624, A384871, A384909.
%K A384910 nonn,cons,easy
%O A384910 2,2
%A A384910 _Paolo Xausa_, Jun 13 2025