cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A384911 Decimal expansion of the surface area of an elongated pentagonal orthocupolarotunda with unit edge.

This page as a plain text file.
%I A384911 #11 Jun 21 2025 11:43:28
%S A384911 3,3,5,3,8,5,3,2,3,3,2,5,0,6,0,5,8,3,1,0,0,4,1,0,0,7,6,2,2,3,6,7,2,8,
%T A384911 8,5,7,1,8,8,7,1,3,8,8,9,1,8,6,0,3,1,5,6,5,9,6,5,8,9,3,9,1,2,2,1,1,1,
%U A384911 8,3,1,7,5,8,8,7,0,7,6,3,7,5,8,3,8,1,3,8,6,8
%N A384911 Decimal expansion of the surface area of an elongated pentagonal orthocupolarotunda with unit edge.
%C A384911 The elongated pentagonal orthocupolarotunda is Johnson solid J_40.
%C A384911 Also the surface area of an elongated pentagonal gyrocupolarotunda (Johnson solid J_41) with unit edge.
%H A384911 Paolo Xausa, <a href="/A384911/b384911.txt">Table of n, a(n) for n = 2..10000</a>
%H A384911 Wikipedia, <a href="https://en.wikipedia.org/wiki/Elongated_pentagonal_gyrocupolarotunda">Elongated pentagonal gyrocupolarotunda</a>.
%H A384911 Wikipedia, <a href="https://en.wikipedia.org/wiki/Elongated_pentagonal_orthocupolarotunda">Elongated pentagonal orthocupolarotunda</a>.
%F A384911 Equals (60 + sqrt(10*(190 + 49*sqrt(5) + 21*sqrt(75 + 30*sqrt(5)))))/4 = (60 + sqrt(10*(190 + 49*A002163 + 21*sqrt(75 + 30*A002163))))/4.
%F A384911 Equals the largest root of 256*x^8 - 30720*x^7 + 1491200*x^6 - 37440000*x^5 + 509444000*x^4 - 3437040000*x^3 + 5993612500*x^2 + 44939625000*x - 172099671875.
%e A384911 33.538532332506058310041007622367288571887138891860...
%t A384911 First[RealDigits[(60 + Sqrt[10*(190 + 49*Sqrt[5] + 21*Sqrt[75 + 30*Sqrt[5]])])/4, 10, 100]] (* or *)
%t A384911 First[RealDigits[PolyhedronData["J40", "SurfaceArea"], 10, 100]]
%Y A384911 Cf. A384910 (volume).
%Y A384911 Cf. A002163, A384284, A384286, A384625.
%Y A384911 Apart from the leading digit the same as A384872.
%K A384911 nonn,cons,easy
%O A384911 2,1
%A A384911 _Paolo Xausa_, Jun 13 2025