cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A384913 The number of unordered factorizations of n into exponentially Fibonacci powers of primes (A115975).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 4, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 3, 2, 1, 1, 1, 6, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 4, 2, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 2, 1, 1, 2, 8, 1, 1, 1, 2, 1, 1, 1, 6, 1, 1, 2, 2, 1, 1, 1, 4, 4, 1, 1, 2, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Jun 12 2025

Keywords

Comments

First differs from A384912 at n = 64.

Examples

			a(4) = 2 since 4 has 2 factorizations: 2^1 * 2^1 and 2^2, with exponents 1 and 2 that are Fibonacci numbers.
		

Crossrefs

Programs

  • Mathematica
    fib[n_] := Boole[Or @@ IntegerQ /@ Sqrt[5*n^2 + {-4, 4}]];
    s[n_] := s[n] = If[n == 0, 1, Sum[Sum[d * fib[d], {d, Divisors[j]}] * s[n-j], {j, 1, n}] / n];
    f[p_, e_] := s[e]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    isfib(n) = issquare(5*n^2 - 4) || issquare(5*n^2 + 4);
    s(n) = if(n < 1, 1, sum(j = 1, n, sumdiv(j, d, d*isfib(d)) * s(n-j))/n);
    a(n) = vecprod(apply(s, factor(n)[, 2]));

Formula

Multiplicative with a(p^e) = A003107(e).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{p prime} f(1/p) = 2.05893526314055968638..., where f(x) = (1-x) / Product_{k>=2} (1-x^A000045(k)).

A384914 The number of unordered factorizations of n into numbers of the form p^(k^2) where p is prime and k >= 0 (A323520).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Jun 12 2025

Keywords

Comments

First differs from A203640, A295658 and A365333 at n = 64, from A043289 and A053164 at n = 81, and from A063775 at n = 512.

Examples

			a(16) = 2 since 4 has 2 factorizations: 2^1 * 2^1 * 2^1 * 2^1 and 2^4, with exponents 1 and 4 that are squares.
		

Crossrefs

Programs

  • Mathematica
    s[n_] := s[n] = If[n == 0, 1, Sum[Sum[d * Boole[IntegerQ[Sqrt[d]]], {d, Divisors[j]}] * s[n-j], {j, 1, n}] / n];
    f[p_, e_] := s[e]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    s(n) = if(n < 1, 1, sum(j = 1, n, sumdiv(j, d, d*issquare(d)) * s(n-j))/n);
    a(n) = vecprod(apply(s, factor(n)[, 2]));

Formula

Multiplicative with a(p^e) = A001156(e).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{p prime} f(1/p) = 1.08451356983124311685..., where f(x) = (1-x) / Product_{k>=1} (1-x^(k^2)).

A384915 The number of unordered factorizations of n into powers of primes of the form p^e where p is prime and 0 <= e <= p (A074583).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 2, 1, 1, 1, 2, 2, 1, 3, 2, 1, 1, 1, 3, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 3, 2, 2, 1, 2, 1, 3, 1, 2, 1, 1, 1, 2, 1, 1, 2, 4, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 2, 2, 1, 1, 1, 3, 4, 1, 1, 2, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Jun 12 2025

Keywords

Examples

			a(4) = 2 since 4 has 2 factorizations: 2^1 * 2^1 and 2^2, with exponents 1 and 2 that are <= 2.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := Length[IntegerPartitions[e, p]]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    T(n, k)=my(s); forpart(v=n, s++, , k); s \\ Charles R Greathouse IV at A026820
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, T(f[i,2], f[i,1]));}

Formula

Multiplicative with a(p^e) = A026820(e, p).
a(n) >= A384916(n), with equality if and only if n is in A048103.

A384916 The number of unordered factorizations of n into powers of primes of the form p^e where p is prime and 0 <= e < p.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Jun 12 2025

Keywords

Comments

First differs from A298735 at n = 125.

Examples

			a(9) = 2 since 9 has 2 factorizations: 3^1 * 3^1 and 3^2, with exponents 1 and 2 that are < 3.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := Length[IntegerPartitions[e, p-1]]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    T(n, k)=my(s); forpart(v=n, s++, , k); s \\ Charles R Greathouse IV at A026820
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, T(f[i,2], f[i,1]-1));}

Formula

Multiplicative with a(p^e) = A026820(e, p-1).
a(n) <= A384915(n), with equality if and only if n is in A048103.

A385418 The number of unordered factorizations of n into powers of primes of the form p^(2^k-1) where p is prime and k >= 0.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Jun 28 2025

Keywords

Comments

First differs from A304327 and A368248 at n = 64.
First differs from A061704 and A362852 at n = 128.
The number of unordered factorizations of n into powers of primes in A036537.

Examples

			  n | a(n) | factorizations
  --+------+-------------------------------------------------------------------
  2 |    8 | 2 * 2 * 2, 2^3
  3 |   64 | 2 * 2 * 2 * 2 * 2 * 2, 2 * 2 * 2 * 2^3, 2^3 * 2^3
  4 |  128 | 2 * 2 * 2 * 2 * 2 * 2 * 2, 2 * 2 * 2 * 2 * 2^3, 2 * 2^3 * 2^3, 2^7
		

Crossrefs

Programs

  • Mathematica
    T[n_, k_] := T[n, k] = If[k <= n, T[n - k, k] + T[n, 2*k + 1], Boole[n == 0]]; f[p_, e_] := T[e, 1];
    a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    t(n, k) = if(k <= n, t(n-k, k) + t(n, 2*k+1), n == 0);
    a(n) = vecprod(apply(x -> t(x, 1), factor(n)[,2]));

Formula

Multiplicative with a(p^e) = A000929(e).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{k>=2} zeta(2^k-1) = 1.21213028603089660618... .
Showing 1-5 of 5 results.