A384913 The number of unordered factorizations of n into exponentially Fibonacci powers of primes (A115975).
1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 4, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 3, 2, 1, 1, 1, 6, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 4, 2, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 2, 1, 1, 2, 8, 1, 1, 1, 2, 1, 1, 1, 6, 1, 1, 2, 2, 1, 1, 1, 4, 4, 1, 1, 2, 1, 1, 1
Offset: 1
Examples
a(4) = 2 since 4 has 2 factorizations: 2^1 * 2^1 and 2^2, with exponents 1 and 2 that are Fibonacci numbers.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
fib[n_] := Boole[Or @@ IntegerQ /@ Sqrt[5*n^2 + {-4, 4}]]; s[n_] := s[n] = If[n == 0, 1, Sum[Sum[d * fib[d], {d, Divisors[j]}] * s[n-j], {j, 1, n}] / n]; f[p_, e_] := s[e]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
-
PARI
isfib(n) = issquare(5*n^2 - 4) || issquare(5*n^2 + 4); s(n) = if(n < 1, 1, sum(j = 1, n, sumdiv(j, d, d*isfib(d)) * s(n-j))/n); a(n) = vecprod(apply(s, factor(n)[, 2]));
Comments